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1. K;-squeezing (Quinn 70s, Ferry-Pedersen 90s ?)

2. L"'-squeezing (Pedersen-Y. 2006)



Squeezing: sometimes, we can deform a sufficiently “small”
object as small as we like.

a trivial example:

X: a finite polyhedron, [: a loop in X

If [ is sufficiently small, then we can shrink it as small as we
like. Actually, we can shrink it to a point (size= 0!).

Vanishing: sometimes, a sufficiently “small” object
represents a trivial element, as in the example above.



Review of Ky(R) and K1 (R)

R: aring with 1

Ko(R) ={|P]|—|Q] | P, Q: f.g. projective R-modules}/ ~

Pl+Ql=|P®Q], [F]=0 (F: free)

If we allow infinitely generated modules, then [P| = 0.
(Eilenberg Swindle)

For P, choose QQ s.t. P® @ = F (free). Then

Pl=[P|+[FeF® - |=[P2QePrQd-- -]
=[FeFaF&---]=0




Reduced Projective Class of a Projective Chain Complex

P:0—-P~P,—-F,_1—-—=>P—=F—=0
(P;: f.g. projective)

~

= [Pl =[Po] =[]+ [P2] = -+ (=1)"[Pn] € Ko(R)

Pl=0 < P~ F (afinite f.g. free chain complex)



GL(n,R)CGL(n+1,R); A~ <1(4)1 (1)>
GL(R)=|JGL(n,R)

K1(R) = GL(R)/ ~, where ~ is gen. by the following
elementary operations:

(6 Da~a~a(y 7). v~

An element of K;(R) can be thought of as a stable

automorphism « on a free R-module R™ = ) Re;:

(@) = (ai5) = ale) =) aije,



a Geometric R-Module on a metric space X
= a free R-module with a basis {z;}
together with a map {z;} — X

We pretend that x;'s are points in X.

Def. A homo. a: M =) Rx; - N = ) _ Ry, has radius 0

< Ck(fz) — Z ;Y



oa: M =) Rx; — M : an automorphism of radius ¢

Def. « is a d-automorphism <= «a~ ! also has radius §.
P

Def @7 |S 5—e|ementary < <Oé> — (I(;{ :[B> (w.r.t. some order)
[

l'is automatically J-elementary.

lts inverse o™

Assume: « is 0-elementary, as above, and Y C X.

A new automorphism & : M — M obtained from « by
defining a(x;) to be a(z;) if x; € Y, and x; if z; € X =Y.
(@v) is obtained by replacing those entries b;; of B
corresponding to the basis elements x; contained in X — Y
by O's, so it is still 0-elementary. & will be called the
localization at Y of a.



Notation: Y € X, 6 > 0 = Y = the closed d-nbhd of Y

e X Is split into two subsets X; and Xy = X — Xj.
-— Xl > < X2 —_—

*

e 0-automorphisms 3 and v on a geometric module M on
X are related by a -elementary automorphism «.

)
a on Xy

\1 on XQI
So, if we apply deformation corresponding to & to (3, we

obtain a new automorphism which is equal to « on
X, — X9 and is equal to 3 on X5 — X?.

The localization o of @ at X satisfies a = <




kl—squeezing

e F. Quinn, Ends of maps, |, Ann. of Math. (2) 110(1979)
e S. Ferry, a seminar talk at Univ. of Edinburgh, 1990

e E. Pedersen, Controlled algebraic K-theory, a survey, in
‘Geometry and Toplogy: Aarhus (1998)’ (AMS, 2000)

R™: the max metric, so the n-dim unit disk is [—1,1]"
X: a cubical subcomplex of S™ = 9[—1,1]"™

A triangulation induces an obvious cubical decomposition:




Thm. (K;-squeezing, Pedersen)

Suppose
6 < 6= dmX and
« is a 0-auto. on a f.g. geom. R-module M on X.

Then, for any € > 0
JN: a f.g. geom. R-module on X
46: an e-automorphism on M & N
st. a®1~ B (a6imAT15 deformation)

Let o« be as above.
Let C*(X)={te eR" |z X, t>1}.



[?lf—vanishing on C*(X) ...Eilenberg Swindle!!
1

3 a locally finetely generated geometric module G on
C*(X)
st. a®lg ~ 1y b 1lg

n = 0 case (assume X = SY)
M is the direct sum of M, on {1} and M_ on {—1}.
Since d <1< 2=d(—-1,1), a: M — M restricts to
automorphisms of M:

@7 @7
VA VA
M_ M.
@ ®
1 1 O*(X)



Put copies of M4 along C*(X) and extend « by using the
identitiy maps on the copies as in the picture below:

1 1 1 « a 1 1 1
A NN NN YA 2 N 2 N2 WA
M_ M_ M_ M_ M, M, M. M,
@ @ @ @ @ @ @ @
<5- -1 1 C*(X)

Apply copies of the following deformation to the above:

(0 4)=6 )6 )G D6 )6 )

—1 —1 —1 —1

8% a o 87 a o a o
A NN N2 YA A NN N2 T

M_ M_ M_ M_ M, M, M. M,
@ @ @ @ @ @ @

o
<6—> —1 1 C*(X

N—"



Apply copies of the same deformation again to get the

identity map:
1 1 1 1 1 1 1 1
VAN NN NN A VAN RN A NN A
M_ M_ M_ M- M, M, My M,
@ @ @ ® ® @ @ @
5> -1 1 O*(X)

n = 1 case (assume X = S1)

M splits into four submodules My, ..., M4 on the edges
Eq, ..., E4, but o does not have such a splitting.
\MZ
M M,




Let A = (), and consider the deformation on M & M:
G a)=6 )G D )k )k 1)k )

Take an edge E;, and localize the six elementary
deformations at F; — (OF;)°.

On (X — E;) U (OFE;)°, it is the identity, and the localized
deformation restricts to a deformation between the identity
map on M, & M, and an automorphism ~; on M; & M,
which is equal to a ® a~! on E; — (OF;)%.

1 1 ga!




Put copies of M;'s along the axes and extend o by using
the identitiy maps on the copies.



V3 V3 o

Apply copies of the localized deformation trick to get a new

automorphism as above.

2

Y2

4!

Y4

Y4

Y1



1
1

1

Now repeat a similar localization trick on a smaller nbhd of
the axes to get identity maps in the gray region.



|
L. ]

De-stabilize the automorphism by eliminating the identity
part aruond the axes.



Now the automorphism is split into four pieces. Apply the
Eilenberg swindle to each piece to get an identity map.



n > 2 cases can be handled in a similar way:

(K -vanishing on C*(X))

1 a locally finetely generated geom. module G on C*(X)
st. a®lg ~ 1y b 1lg

Important Observation:

The deformation has a finite radius r , although the
modules are infinitely generated.

Choose a number s > r.



Now localize the deformation at the ball B of radius s, and
use it to deform a P 14.

Then the result is the sum of an identity automorphism and
an automorphism o’ on a nbhd N of the boundary of B.



Throw away everything outside of B U IV to obtain an
automorphism and a deformation on a f.g. module.

Now, radially shrink everything to X. The radius of the
image (5 of &’ can be made as small as we like by choosing

a sufficiently large s.




Squeezing in L-theory

E. K. Pedersen-Y., Stability in Controlled L-theory,

Geometry and Topology Monographs Vol.9: Exotic
homology manifolds — Oberwolfach 2003 (2006)

L-theory = theory of Quadratic Complexes which are
Poincaré (QPC)

a QC=an R-module chain complex + a quadratic structure

a QC C induces a symmetric structure and a duality chain
mapD:C"* - C, n=dimC

a QC is Poincaré <= D is a chain homotopy equivalence



controlled L-theory = theory of geometric QPC's

Thm.
X: a finite polyhedron, n > 0
Then 4 99 > 0, 4 K > 0 which depend on X and n s.t.

if C'is an n-dim. geom. QPC on X with radius 0 < 0y,
then, for any € > 0,

(' is Ko-cobordant to a geom. QPC of radius ¢.



The proof is quite similar to the K-theory case, but we
avoid using infinitely generated objects.

We do use a tower for Eilenberg Swindle but do not need
an infinite tower.

Let us consider the X = S?! case.



Pick a vertex v and set A to be its star nbhd, and B be the
closure of the complement of A.

® ° °
B A v A B

Let C be a geom. QPC on X with very small radius 0.
Then, C is cobordant to the union of F on A and G on B

with the common boundary P on 0A:
G P F P

P is a projective QPC on 0A, but is chain equivalent to a
free cx on A



Now consruct a tall tower on F', and apply Eilenberg
swindle to the P’s except for the top P. Replace the top P
by a free cx on A and shrink!

& SR s e S B 5 e I 5[y Y B IS
S




On a 2-simplex, we use two types of shrinking.
(1)0—1,1—1,2—2
The radius in the direction of solid lines are controlled.




The second type finishes the squeezing:
2)0—2,1—2,2—2
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