
On Squeezing

Masayuki Yamasaki

(Okayama University of Science)

1. K̃1-squeezing (Quinn 70s, Ferry-Pedersen 90s ?)

2. Lh
n-squeezing (Pedersen-Y. 2006)



Squeezing: sometimes, we can deform a sufficiently “small”

object as small as we like.

a trivial example:

X: a finite polyhedron, l: a loop in X

If l is sufficiently small, then we can shrink it as small as we

like. Actually, we can shrink it to a point (size= 0!).

Vanishing: sometimes, a sufficiently “small” object

represents a trivial element, as in the example above.



Review of K̃0(R) and K̃1(R)

R: a ring with 1

K̃0(R) = {[P ]− [Q] | P , Q: f.g. projective R-modules}/ ∼

[P ] + [Q] = [P ⊕Q], [F ] = 0 (F : free)

If we allow infinitely generated modules, then [P ] = 0.

(Eilenberg Swindle)

For P , choose Q s.t. P ⊕Q ∼= F (free). Then

[P ] = [P ] + [F ⊕ F ⊕ · · · ] = [P ⊕Q⊕ P ⊕Q⊕ · · · ]
= [F ⊕ F ⊕ F ⊕ · · · ] = 0



Reduced Projective Class of a Projective Chain Complex

P : 0 → Pn → Pn−1 → · · · → P1 → P0 → 0

(Pi: f.g. projective)

⇒ [P ] = [P0]− [P1] + [P2]− · · ·+ (−1)n[Pn] ∈ K̃0(R)

[P ] = 0 ⇔ P ≃ F (a finite f.g. free chain complex)



GL(n,R) ⊂ GL(n+ 1, R); A 7→
(
A 0

0 1

)
GL(R) =

∪
GL(n,R)

K̃1(R) = GL(R)/ ∼, where ∼ is gen. by the following

elementary operations:(
I B
O I

)
A ∼ A ∼ A

(
I B
O I

)
,

(
−1

)
∼

(
1
)

An element of K̃1(R) can be thought of as a stable

automorphism α on a free R-module Rn =
∑

Rei:

⟨α⟩ =
(
aij

)
⇐⇒ α(ei) =

∑
aijej



a Geometric R-Module on a metric space X

= a free R-module with a basis {xi}
together with a map {xi} → X

We pretend that xi’s are points in X.

Def. A homo. α : M =
∑

Rxi → N =
∑

Ryj has radius δ

⇐⇒ α(xi) =
∑

d(xi,yj)≤δ

aijyj

δxi

aijyj

0yk



α : M =
∑

Rxi → M : an automorphism of radius δ

Def. α is a δ-automorphism ⇐⇒ α−1 also has radius δ.

Def. α is δ-elementary ⇐⇒ ⟨α⟩ =
(
Ik B

0 Il

)
(w.r.t. some order)

Its inverse α−1 is automatically δ-elementary.

Assume: α is δ-elementary, as above, and Y ⊂ X.

A new automorphism ᾱ : M → M obtained from α by

defining ᾱ(xi) to be α(xi) if xi ∈ Y , and xi if xi ∈ X − Y .

⟨ᾱ⟩ is obtained by replacing those entries bij of B

corresponding to the basis elements xi contained in X − Y

by 0’s, so it is still δ-elementary. ᾱ will be called the

localization at Y of α.



Notation: Y ⊂ X, δ > 0 ⇒ Y δ = the closed δ-nbhd of Y

• X is split into two subsets X1 and X2 = X −X1.
X1 X2

δ δ

• δ-automorphisms β and γ on a geometric module M on

X are related by a δ-elementary automorphism α.

The localization ᾱ of α at X1 satisfies ᾱ =

{
α on X1

1 on X2

.

So, if we apply deformation corresponding to ᾱ to β, we

obtain a new automorphism which is equal to γ on

X1 −Xδ
2 and is equal to β on X2 −Xδ

1 .



K̃1-squeezing

• F. Quinn, Ends of maps, I, Ann. of Math. (2) 110(1979)

• S. Ferry, a seminar talk at Univ. of Edinburgh, 1990

• E. Pedersen, Controlled algebraic K-theory, a survey, in

‘Geometry and Toplogy: Aarhus (1998)’ (AMS, 2000)

Rn: the max metric, so the n-dim unit disk is [−1, 1]n

X: a cubical subcomplex of Sn = ∂[−1, 1]n

A triangulation induces an obvious cubical decomposition:



Thm. (K̃1-squeezing, Pedersen)

Suppose

δ ≪ 6− dimX , and

α is a δ-auto. on a f.g. geom. R-module M on X.

Then, for any ε > 0

∃N : a f.g. geom. R-module on X

∃β: an ε-automorphism on M ⊕N

s.t. α⊕ 1 ∼ β (a 6dimX+1δ-deformation)

Let α be as above.

Let C∗(X) = { tx ∈ Rn | x ∈ X, t ≥ 1 }.



(K̃lf
1 -vanishing on C∗(X) . . . Eilenberg Swindle!!)

∃ a locally finetely generated geometric module G on

C∗(X)

s.t. α⊕ 1G ∼ 1M ⊕ 1G

n = 0 case (assume X = S0)

M is the direct sum of M+ on {1} and M− on {−1}.
Since δ < 1 < 2 = d(−1, 1), α : M → M restricts to

automorphisms of M±:

C∗(X)−1 1

M− M+

x x

α α



Put copies of M± along C∗(X) and extend α by using the

identitiy maps on the copies as in the picture below:

δ C∗(X)−1 1

M− M+M− M+M− M+M− M+

x xx xx xx x

α α1 11 11 1

Apply copies of the following deformation to the above:
(

A 0

0 A
−1

)

=

(

1 1

0 1

)(

1 0

−1 1

)(

1 1

0 1

)(

1 0

A 1

)(

1 −A
−1

0 1

)(

1 0

A 1

)

δ C∗(X)−1 1

M− M+M− M+M− M+M− M+

x xx xx xx x

α αα−1 α−1α αα−1 α−1



Apply copies of the same deformation again to get the

identity map:

δ C∗(X)−1 1

M− M+M− M+M− M+M− M+

x xx xx xx x

1 11 11 11 1

n = 1 case (assume X = S1)

M splits into four submodules M1, . . . , M4 on the edges

E1, . . . ,E4, but α does not have such a splitting.

M1

M2

M3

M4



Let A = ⟨α⟩, and consider the deformation on M ⊕M :
(

A 0

0 A
−1

)

=

(

1 1

0 1

)(

1 0

−1 1

)(

1 1

0 1

)(

1 0

A 1

)(

1 −A
−1

0 1

)(

1 0

A 1

)

Take an edge Ei, and localize the six elementary
deformations at Ei − (∂Ei)

δ.

On (X − Ei) ∪ (∂Ei)
δ, it is the identity, and the localized

deformation restricts to a deformation between the identity

map on Mi ⊕Mi and an automorphism γi on Mi ⊕Mi

which is equal to α⊕ α−1 on Ei − (∂Ei)
3δ.

1 1

∼

γ1

α
−1

α



α

α

α

α
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1

1

1

1

1

· · · · · ·

Put copies of Mi’s along the axes and extend α by using

the identitiy maps on the copies.



α α
−1 α α

−1αα
−1αα

−1

α

α
−1

α

α
−1

α

α
−1

α

α
−1

γ3 γ3 γ1 γ1

γ4

γ4

γ2

γ2

· · · · · ·

Apply copies of the localized deformation trick to get a new

automorphism as above.



1 1 1 11111

1

1

1

1

1

1

1

1

· · · · · ·

Now repeat a similar localization trick on a smaller nbhd of

the axes to get identity maps in the gray region.



1 1 1 11111

1

1

1

1

1

1

1

1

· · · · · ·

De-stabilize the automorphism by eliminating the identity

part aruond the axes.



· · · · · ·

Now the automorphism is split into four pieces. Apply the

Eilenberg swindle to each piece to get an identity map.



n ≥ 2 cases can be handled in a similar way:

(K̃lf
1 -vanishing on C∗(X))

∃ a locally finetely generated geom. module G on C∗(X)

s.t. α⊕ 1G ∼ 1M ⊕ 1G

Important Observation:

The deformation has a finite radius r , although the

modules are infinitely generated.

Choose a number s ≫ r.



Now localize the deformation at the ball B of radius s, and

use it to deform α⊕ 1G.

s

X

1

α
′

1

Then the result is the sum of an identity automorphism and

an automorphism α′ on a nbhd N of the boundary of B.



Throw away everything outside of B ∪N to obtain an

automorphism and a deformation on a f.g. module.

s

X

1

α
′

Now, radially shrink everything to X. The radius of the

image β of α′ can be made as small as we like by choosing

a sufficiently large s. □



Squeezing in L-theory

E. K. Pedersen-Y., Stability in Controlled L-theory,

Geometry and Topology Monographs Vol.9: Exotic

homology manifolds – Oberwolfach 2003 (2006)

L-theory = theory of Quadratic Complexes which are

Poincaré (QPC)

a QC=an R-module chain complex + a quadratic structure

a QC C induces a symmetric structure and a duality chain

map D : Cn−∗ → C, n = dimC

a QC is Poincaré ⇐⇒ D is a chain homotopy equivalence



controlled L-theory = theory of geometric QPC’s

Thm.

X: a finite polyhedron, n > 0

Then ∃ δ0 > 0, ∃ K > 0 which depend on X and n s.t.

if C is an n-dim. geom. QPC on X with radius δ ≤ δ0,

then, for any ε > 0,

C is Kδ-cobordant to a geom. QPC of radius ε.



The proof is quite similar to the K-theory case, but we

avoid using infinitely generated objects.

We do use a tower for Eilenberg Swindle but do not need

an infinite tower.

Let us consider the X = S1 case.



Pick a vertex v and set A to be its star nbhd, and B be the

closure of the complement of A.

B A v A B

Let C be a geom. QPC on X with very small radius δ.

Then, C is cobordant to the union of F on A and G on B

with the common boundary P on ∂A:

B A v A B

C

FG PP

P is a projective QPC on ∂A, but is chain equivalent to a

free cx on A



Now consruct a tall tower on F , and apply Eilenberg

swindle to the P ’s except for the top P . Replace the top P

by a free cx on A and shrink!

B A v A B
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On a 2-simplex, we use two types of shrinking.

(1) 0 −→ 1, 1 −→ 1, 2 −→ 2

The radius in the direction of solid lines are controlled.

0

12

0

12



The second type finishes the squeezing:

(2) 0 −→ 2, 1 −→ 2, 2 −→ 2

0

12

0

12


