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1 Introduction

Let us fix an integer n ≥ 0, a continuous map pX : M → X to a metric space X ,
and a ring R with involution. For each pair of positive numbers ε ≤ δ , the delta-
epsilon controlled L-group Lδ,ε

n (X; pX , R) is defined to be the set of equivalence
classes of n-dimensional quadratic Poincaré R-module complexes on pX of
radius ε (= n-dimensional ε Poincaré ε quadratic R-module complexes on
pX ), where the equivalence relation is generated by Poincaré cobordisms of
radius δ (= δ Poincaré δ cobordisms) [9] [10] [12]. If δ ≤ δ′ and ε ≤ ε′ , there
is a natural homomorphism

Lδ,ε
n (X; pX , R) → Lδ′,ε′

n (X; pX , R)

defined by relaxation of control. In general, this map is neither surjective nor
injective. None the less, if X is a finite polyhedron and pX is a polyhedral
stratified system of fibrations in the sense of [5], the map above turns out to be
an isomorphism for certain values of δ , δ′ , ε, ε′ :

Theorem 1 (Stability in Controlled L-groups) For each integer n ≥ 0 and
a finite polyhedron X , there exist constants δ0 > 0 and κ > 1 such that the
following hold : If

(1) κε ≤ δ ≤ δ0 , κε′ ≤ δ′ ≤ δ′0 , δ ≤ δ′ , ε ≤ ε′ ,

(2) pX : M → X is a polyhedral stratified system of fibrations, and
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2 Erik Kjær Pedersen and Masayuki Yamasaki

(3) R is a ring with involution,

then the relax-control map Lδ,ε
n (X; pX , R) → Lδ′,ε′

n (X; pX , R) is an isomor-
phism.

It follows that all the groups Lδ,ε
n (X; pX , R) with κε ≤ δ ≤ δ0 are isomorphic

and are equal to the controlled L-group Lc
n(X; pX , R) of pX with coefficient

ring R.

Stability is a consequence of squeezing; squeezing/stability for controlled K0

and K1 -groups were known [3]. ‘Splitting’ was the key idea there. In section
2, we discuss splitting in the controlled L-theory. An element of a controlled
L-group is represented by a quadratic Poincaré complex on a space. If it splits
into small pieces lying over cone-shaped sets (e.g. simplices), then we can
shrink all the pieces at the same time to obtain a squeezed complex. But
splitting in L-theory requires a change of K -theoretic decoration; if you split a
free quadratic Poincaré complex, then you get a projective one in the middle.
Since the controlled reduced projective class group is known to vanish when
the coefficient ring is Z and the control map is UV 1 , we do not need to worry
about the controlled K -theory and squeezing holds in this case [4].

Several years ago the first named author proposed an approach to squeez-
ing/stability in controlled L-groups imitating the method of [3]. The idea was
to use projective complexes to split and to eventually eliminate the projective
pieces using the Eilenberg swindle :

[P ] = [P ] + (−[P ] + [P ]) + (−[P ] + [P ]) + (−[P ] + [P ]) + · · ·
= ([P ]− [P ]) + ([P ]− [P ]) + ([P ]− [P ]) + ([P ]− [P ]) + · · · = 0 .

This approach works for any R if X is a circle; we will briefly discuss the proof
in section 3.

The method used in section 3 does not generalize to higher dimensions, because
it requires repeated application of splitting but that is not easy to do with
projective complexes. This means that we should not try to shrink the complex
globally, but should try to shrink a small part of the complex lying over a cone
neighborhood of some point at a time. Such a local shrinking construction is
possible when the control map is a polyhedral stratified system of fibrations,
and is called an Alexander trick. We study its effect in section 4, and use it
repeatedly to prove Theorem 1 in section 5. Note that we do one splitting of the
whole complex for each application of an Alexander trick; we are not splitting
the split pieces.

In section 6, we discuss several variations of Theorem 1.
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Stability in Controlled L-Theory 3

Finally, in section 7, we relate the delta-epsilon controlled L-groups to the
bounded L-groups in a special case.

The authors would like to thank Frank Connolly, Jim Davis, Frank Quinn and
Andrew Ranicki for invaluable suggestions.

2 Glueing and Splitting

In this section we review techniques called glueing and splitting. If pX : M → X
is a control map and Y is a subset of X , then we denote the restriction pX |Y
of pX by pY . A closed ε neighborhood of Y in X is denoted by Y ε . We refer
the reader to [9] [10] for terms and notations in controlled L-theory.

We first discuss the glueing operation; it is to take the union of two objects with
common pieces of boundary. Suppose there are consecutive Poincaré cobor-
disms of radius δ , one from (C, ψ) to (C ′, ψ′) and the other from (C ′, ψ′) to
(C ′′, ψ′′). Then their union is a Poincaré cobordism of radius 100δ from (C,ψ)
to (C ′′, ψ′′) (Proposition 2.8 of [10]). We will encounter this factor “100” many
times in this article, and will denote it by µ at several places of section 5. For
example, we will need the following, which is a special case of Proposition 3.7
of [10].

Proposition 2 If [C, ψ] = 0 in Lδ,ε
n (X; pX , R), then there is a Poincaré cobor-

dism of radius 100δ from (C, ψ) to 0.

Proof By definition, there is a sequence of consecutive Poincaré cobordisms
starting from (C,ψ) and ending at 0. Their union can be regarded as the
union of the even-numbered ones and the odd-numbered ones, so it is 100δ
Poincaré.

Next we discuss splitting. Before stating the splitting lemma, let us recall
a minor technicality from §6 of [8] : Suppose X is the union of two closed
subsets A and B with intersection Y = A ∩ B . If a path γ : [0, s] → M with
pXγ(0) ∈ A is contained in p−1

X ({γ(0)}ε), then it lies in p−1
X (A∪Y 2ε). Of course

it is contained also in p−1
X (Aε), but this is slightly less useful.

Lemma 3 (Splitting Lemma) For any integer n ≥ 2, there exists a positive
number λ ≥ 1 such that the following holds: If pX : M → X is a map to a met-
ric space X , X is the union of two closed subsets A and B with intersection Y ,
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and R is a ring with involution, then for any n-dimensional quadratic Poincaré
R-module complex c = (C,ψ) on pX of radius ε, there exist a Poincaré cobor-
dism of radius λε from c to the union c′ ∪ c′′ of an n-dimensional quadratic
Poincaré pair c′ = (f ′ : P → C ′, (δψ̄′,−ψ̄)) on pA∪Y λε of radius λε and an n-
dimensional quadratic Poincaré pair c′′ = (f ′′ : P → C ′′, (δψ̄′′, ψ̄)) on pB∪Y λε

of radius λε, where (P, ψ̄) is an (n − 1)-dimensional quadratic Poincaré pro-
jective R-module complex on pY λε and P is λε chain equivalent to an (n− 1)-
dimensional free chain complex on pA∪Y λε and also to an (n− 1)-dimensional
free chain complex on pB∪Y λε .

Proof This is an epsilon-control version of Ranicki’s argument for the bounded
control case [7]. For a given (C,ψ) of radius ε, pick up a subcomplex C ′ ⊂ C
such that C ′ is identical with C over A and C ′ lies over some neighborhood
of A. Let p : C → C/C ′ be the quotient map and define C ′′ by the n-dual
(C/C ′)n−∗ . Define a complex E by the desuspension ΩC(pDψp∗) of the alge-
braic mapping cone of the following map:

C ′′ = (C/C ′)n−∗ p∗
//Cn−∗ Dψ

//C
p

//C/C ′ ,

where Dψ is the duality map (1+T )ψ0 for ψ . There are natural maps g′ : E →
C ′ , g′′ : E → C ′′ and adjoining quadratic Poincaré structures on them such that
the union along the common boundary is homotopy equivalent to the original
complex c. We should note that E is non-trivial in degrees −1 and n and that
it lies over B .

Since Dψ is a small chain equivalence, its mapping cone is contractible. There-
fore, E is contractible away from the union of A and a small neighborhood of
Y , and it is chain equivalent to a projective chain complex P lying over a small
neighborhood of Y by 5.1 and 5.2 of [8]. Note that Z is used as the coefficient
ring in [8], but the same argument works when the coefficient ring is replaced
by R. Since n ≥ 2, we can assume that P is strictly (n− 1)-dimensional (i.e.
Ci = 0 for i < 0 and i > n − 1 ) by the standard folding argument, and the
chain equivalence induces a desired cobordism.

There is a quadratic Poincaré structure on a chain map f ′ : P → C ′ ; therefore,
the duality map gives a chain equivalence C ′n−∗ −→ C(f ′), were C(f ′) denotes
the algebraic mapping cone of f ′ : P → C ′ . Therefore

[P ] = −([C ′]− [P ]) = −[C(f ′)] = −[C ′n−∗] = 0

in the epsilon controlled reduced projective class group of the union of A and a
small neighborhood of Y with coefficient in R, and hence P is chain equivalent
to a free (n−1)-dimensional complex F ′ lying over the union of A and a small
neighborhood of Y .

Geometry & Topology Monographs, Volume X (20XX)



Stability in Controlled L-Theory 5

Remarks. (1) Suppose that X is a finite polyhedron or a finite cell complex
in the sense of [11] more generally. Then there exist positive numbers εX > 0,
µX ≥ 1 and a homotopy {ft} : X → X such that

• f0 = 1X ,

• ft(∆) ⊂ ∆ for each cell ∆ and for each t ∈ [0, 1],

• ft is Lipschitz with Lipschitz constant µX for each t ∈ [0, 1], and

• f1((X(i))εX ) ⊂ X(i) for every i, where X(i) is the i-skeleton of X .

Suppose {ft} is covered by a homotopy {Ft : M → M} and set δX = εXλ.
If ε ≤ δX and A and B are subcomplexes of X , then by applying F1 to the
splitting given in the above lemma, we may assume that the pieces lie over A,
B and A ∩B respectively, instead of their neighborhoods, since the homotopy
gives small isomorphisms between the corresponding pieces. But λ is now
replaced by µXλ and it depends not only on n but also on X . We call such a
deformation {ft} a rectification for X .

(2) The splitting formula for pairs given in [12] can be combined with 5.1 and 5.2
of [8] to prove a similar splitting lemma for pairs of dimension ≥ 3: a sufficiently
small Poincaré pair splits into two adjoining quadratic Poincaré triads whose
common boundary piece is possibly a projective pair.

3 Squeezing over a Circle

We discuss squeezing over the unit circle. We use the maximum metric of R2 ,
so the unit circle looks like a square:

Consider a quadratic Poincaré R-module complex on the unit circle. We assume
that its radius is sufficiently small so that it splits into four free pieces E , F ,
G, H with projective boundary pieces P , Q, S , T as shown in the picture
below. The shadowed region is a cobordism between the original complex and
the union of E , F , G, H . Although we actually measure the radius using the
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radial projection to the unit circle (i.e. the square), we pretend that complexes
and cobordisms are over the plane.
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We extend this cobordism in the following way. On the right vertical edge, we
have a quadratic pair P ⊕ Q → F . (We are omitting the quadratic structure
from notation.) Take the tensor product of this with the symmetric complex of
the unit interval [0, 1]. Make many copies of such a product and consecutively
glue them one after the other to the cobordism. Do the same thing with the
other three edges. Then fill in the four quadrants by copies of P , Q, S , T
multiplied by the symmetric complex of [0, 1]2 so that the whole picture looks
like a huge square with a square hole at the center.

Although this cobordism is made up of free complexes and projective com-
plexes, the projective complexes sitting on the white edges are shifted up 1
dimension, and the projective complexes sitting at the lattice points are shifted
up 2 dimension in the union.
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We can make pairs of these (as shown in the picture above for P ’s) so that each
pair contributes the trivial element in the controlled reduced projective class
group. Replace each pair by a free complex.

Unlike the real Eilenberg swindle, there are four projective complexes left which
do not make pairs. We may assume that they are the boundary pieces of F and
H on the outer end. Since the two pairs P ⊕Q → F , S⊕T → H are Poincaré,
the unions P ⊕ Q and S ⊕ T are locally chain equivalent to free complexes.
Thus we can replace them by free complexes, and now everything is free.

Now recall that we actually measure things by a radial projection to the square.
Thus we have a cobordism from the original complex to another complex of very
small radius. If we increase the number of layers in the construction, the radius
of the outer end becomes arbitrarily small. This is the squeezing in the case of
S1 .

4 Alexander Trick

The method in the previous section does not work for higher dimensional com-
plexes, because we cannot inductively split the projective pieces. But the proof
suggests an alternative way toward squeezing/stability. This is the topic of
this section. Although we used a radial projection to measure the size in the
previous section, we draw pictures of things in their real sizes in this section.

Let us fix an integer n ≥ 2 and a finite polyhedron X . All the complexes below
are R-module complexes, where R is a ring with involution. We assume that
the control map pX : M → X is a polyhedral stratified system of fibrations [5];
pX is fiber homotopy equivalent to a map qX : N → X which has an iterated
mapping cylinder decomposition in the sense of Hatcher [2] : there is a partial
order on the set of the vertices of X such that, for each simplex ∆ of X ,

(1) the partial order restricts to a total order of the vertices of ∆

v0 < v1 < · · · < vk ,

(2) q−1
X (∆) is the iterated mapping cylinder of a sequence of maps

Fv0 −→ Fv1 −→ . . . −→ Fvk
,

(3) the restriction qX |q−1
X (∆) is the natural map induced from the iterated

mapping cylinder structure of q−1
X (∆) above and the iterated mapping

cylinder structure of ∆ coming from the sequence

{v0} −→ {v1} −→ . . . −→ {vk} .

Geometry & Topology Monographs, Volume X (20XX)



8 Erik Kjær Pedersen and Masayuki Yamasaki

An order on the set of the vertices of X is said to be compatible with pX

if it is compatible with this partial order. Let us fix an order compatible with
pX .

Pick a vertex v of X , and let A be the star neighborhood of v , B be the
closure of the complement of A in X , and S be the union of the simplices in A
whose vertices are all ≥ v with respect to the chosen order. This will be called
the stable set at v . Let s : A → S be the simplicial retraction defined by

s(v′) =

{
v if v′ < v,
v′ if v′ ≥ v,

for vertices v′ of A. A strong deformation retraction st : A → A is defined
by st(a) = (1 − t)a + t s(a) for a ∈ A and t ∈ [0, 1]. Note that this strong
deformation retraction st is covered by a deformation s̃t on M , since pX is a
polyhedral stratified system of fibrations.
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Given a sufficiently small n-dimensional quadratic Poincaré complex c = (C,ψ)
on pX , one can split it according to the splitting of X into A and B : c
is cobordant (actually homotopy equivalent) to the union c′ of a projective
quadratic Poincaré pair a = (f : P → F, (δψ′, ψ′)) on pA and a projective
quadratic Poincaré pair b = (g : P → G, (δψ′′,−ψ′)) on pB , where F is an
n-dimensional chain complex on pA , G is an n-dimensional chain complex on
pB , and P is an (n− 1)-dimensional projective chain complex on pA∩B . Here
we again used the assumption on pX . See the remark after the splitting lemma.

Make many copies of the product cobordism from the pair a to itself, and
successively glue them to the cobordism between c and c′ . This gives us a
cobordism from c to a (possibly) projective complex as in the left picture below.
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We will remedy the situation by replacing the projective end by a free complex
as follows. The copies of P connecting the layers are actually shifted up 1
dimension in the union, so the marked pairs of P ’s contribute the trivial element
of the controlled K̃0 group of A ∩B , and we can replace each pair with a free
module by adding chain complexes of the form

0 //Qi
1 //Qi

//0

lying over A ∩ B , where Qi is a projective module such that Pi ⊕ Qi is free.
Therefore, these pairs are all chain equivalent to some free chain complex F ′ .
The last P remaining at the top of the picture can be replaced by some free
complex F ′′ lying over A as stated in the splitting lemma.

We deform the tower, which is now free, toward S using s̃t as in the picture
above so that the top of the tower is completely deformed to S .

Summary There exist constants δ > 0 and λ ≥ 1 which depend on n and
X such that any n-dimensional quadratic Poincaré complex of radius ε ≤ δ on
pX is λε Poincaré cobordant to another complex which is small in the track
direction of st . The more layers we use, the smaller the result becomes in the
track direction.

Remarks. (1) We cannot take λ = 1 in general, since the radius of the
complexes gets bigger during the splitting/glueing processes.

(2) This construction will be referred to as the Alexander trick at v .
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(3) There is also an Alexander trick for pairs. If we use the splitting lemma for
pairs, then instead of a pair we get a Poincaré triad

P //

²² ÁÁ
�^

�^
�^

�^
Q

²²

E //F

over A, where P , Q are projective and E , F are free. Since both P and Q are
free over A, we can carry out the construction exactly in the same manner as
above. The effect on the boundary is exactly the same as the absolute Alexander
trick.

(4) Take a simplex ∆ of X with ordered vertices v0 < v1 < · · · < vn . Let
(λ0, . . . , λn) be the barycentric coordinates of a point x ∈ ∆, i.e. x =

∑
λivi .

Then we define the pseudo-coordinates (x1, . . . , xn) of x by xi = λi/(λ0 + · · ·+
λi). Actually xi is indeterminate if λ0 = · · · = λi . Let si,t : ∆ → ∆ be the
restriction to ∆ of the deformation retraction used for an Alexander trick at
vi ; then s0,t = 1∆ for every t ∈ [0, 1], and si,t preserves the pseudo-coordinate
xj for j not equal to i. This means that, roughly speaking, an Alexander trick
at vi improves the radius control in the xi direction and changes the radius
control in the xj direction (j 6= i) only up to multiplications by the constant
λ given in the Splitting Lemma and by the Lipschitz constant of si,t which
is uniform with respect to t. Thus, if we can perform appropriate Alexander
tricks at all the vertices of ∆, then we can obtain an arbitrarily fine control
over ∆. A more detailed discussion will be given in the next section.

Let us state a lemma on Lipschitz properties related to the homotopy st above,
for future use.

Lemma 4 Let X be a subset of RN with diameter d and s : X → X be a
Lipschitz map with Lipschitz constant K ≥ 1. Suppose X contains the line
segment xs(x) for every x ∈ X and let st(x) = ts(x) + (1 − t)x for t ∈ [0, a].
Then st : X → X has Lipschitz constant K , and the map

H : X × [0, a] → X × [0, a] ; H(x, t) = (st/a(x), t)

has Lipschitz constant max{d/a, 1}+ K with respect to the maximum metric
on X × [0, a].

Geometry & Topology Monographs, Volume X (20XX)
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Proof Let x, y be points in X . Then

d(st(x), st(y)) = ‖t(s(x)− s(y)) + (1− t)(x− y)‖
≤ td(s(x), s(y)) + (1− t)d(x, y)
≤ tKd(x, y) + (1− t)Kd(x, y) = Kd(x, y) .

Next, take two points p = (x, t), q = (y, u) of X × [0, a], and let p′ = (x, u).
Then we have

d(H(p),H(q)) ≤ d(H(p),H(p′)) + d(H(p′),H(q))
= max{d(st/a(x), su/a(x)), |t− u|}+ d(su/a(x), su/a(y))

≤ max{|t− u|d(s(x), x)/a, |t− u|}+ Kd(x, y)
≤ |t− u|max{d/a, 1}+ Kd(x, y)
≤ (max{d/a, 1}+ K)max{d(x, y), |t− u|}
= (max{d/a, 1}+ K)d(p, q) .

5 Proof of Theorem 1

The algebraic theory of surgery on quadratic Poincaré complexes in an additive
category [6] carries over nicely to the controlled setting, and can be used to
prove a stable periodicity of the controlled L-groups. Therefore, we give a
proof of the stability in the case n ≥ 2. The stability for n = 0, 1 follows from
the stability for n = 4, 5.

We first state the squeezing lemma for quadratic Poincaré complexes:

Lemma 5 (Squeezing of Quadratic Poincaré Complexes) Let n ≥ 2 be an
integer and X be a finite polyhedron. There exist constants δ0 > 0 and κ > 1
such that the following hold: If ε < ε′ ≤ δ0 , then any n-dimensional quadratic
Poincaré R-module complex of radius ε′ on a polyhedral stratified system of
fibrations over X is κε′ Poincaré cobordant to a quadratic Poincaré complex
of radius ε.

Proof Let X be a polyhedron in RN , and pX : M → X be a polyhedral
stratified system of fibrations. Order the vertices of X compatibly with pX :

v0 < v1 < · · · < vm .

Geometry & Topology Monographs, Volume X (20XX)
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The basic idea is to apply the Alexander trick at each vi . This should make the
complex arbitrarily small in X as noted in the previous section. The problem is
that an Alexander trick is made up of two steps: the first step is to make a tower
using splitting, and the second step is to squeeze the tower, and estimating the
effect of the splitting used in the first step is very difficult especially near the
vertex when the object is getting smaller in a non-uniform way. To avoid this
difficulty, we blow up the metric around each vertex so that the ordinary control
on the new metric space insures us that the result has a desired small control
measured on the original metric space X . Note that we are implicitly using
this approach in the circle case.

Let us start from a complex c of radius ε′ > 0 on X . Since X is a finite
polyhedron, there exist δ > 0 and λ ≥ 1 such that if ε′ ≤ δ then c is λε′

cobordant to the union of two pieces according to the splitting of X into two
subpolyhedra as in the remark after Lemma 3. Recall that δ and λ depends
on X . Set µ = 100, and set δ0 = δ/(µλ2)m−1 . The factor 100 comes from
2.8 of [10] as was mentioned in §2. We claim that if ε′ ≤ δ0 , then a successive
application of Alexander tricks produces a cobordism from c to a complex of
radius ε.

Let us fix some more notation. V1 , . . . , Vm are the star neighborhoods of v1 ,
. . . , vm , and L1 , . . . , Lm are the links of v1 , . . . , vm ; Vi is the cone over Li

with vertex vi for each i. S1 , . . . , Sm are the stable sets at v1 , . . . , vm . K ≥ 1
is the Lipschitz constant which works for every retraction si : Vi → Si used
for the Alexander trick at vi . Let d denote the diameter of X , and let ](X)
denote the number of simplices of X . Now fix a number H ≥ 1 such that

H > d and 4µ](X)(K + 1)m(µλ2)mε′ · d

H
< ε .

We inductively define metric spaces and subsets

Xi,j
∗ ⊃ Xi,j ⊃ V i,j

k ⊃ Li,j
k (1 ≤ i ≤ j < k ≤ m)

together with control maps pi,j
∗ : M i,j

∗ → Xi,j
∗ as follows.

Identify RN with the subset RN × {0} of RN+1 = RN ×R with the maximum
product metric. For each i = 1, . . . , m, define Xi,i

∗ and its subsets Xi,i , V i,i
k ,

Geometry & Topology Monographs, Volume X (20XX)
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Li,i
k (k = i + 1, · · · ,m) by

Xi,i
∗ = X ∪ (Vi × [0,H]) ,

Xi,i = (X − Vi) ∪ (Li × [0, H]) ∪ (Vi × {H}) ,

V i,i
k = (Vk − Vi) ∪ (Vk ∩ Li × [0,H]) ∪ (Vk ∩ Vi × {H}) ,

Li,i
k = (Lk − Vi) ∪ (Lk ∩ Li × [0,H]) ∪ (Lk ∩ Vi × {H}) .

The projection RN × R → RN restricts to a retraction ri,i : Xi,i
∗ → X . We

define the control map pi,i
∗ : M i,i

∗ → Xi,i
∗ to be the pullback of pX : M → X via

ri,i , and define the control map pi,i : M i,i → Xi,i to be the restriction of pi,i
∗ to

M i,i . Note that the stereographic projection from (vi,−H) ∈ RN × R defines
a homeomorphism X → Xi,i sending Vk and Lk to V i,i

k and Li,i
k respectively,

since Vi is the cone on Li with center vi .

Next, for each i = 1, . . . , m − 1, define Xi,i+1
∗ ⊂ RN × R × R and its subsets

Xi,i+1 , V i,i+1
k , Li,i+1

k (k = i + 2, · · · ,m) by

Xi,i+1
∗ = Xi,i ∪ (V i,i

i+1 × [0,H]) ,

Xi,i+1 = (Xi,i − V i,i
i+1) ∪ (Li,i

i+1 × [0,H]) ∪ (V i,i
i+1 × {H}) ⊂ Xi,i × R ,

V i,i+1
k = (V i,i

k − V i,i
i ) ∪ (V i,i

k ∩ Li,i
i × [0,H]) ∪ (V i,i

k ∩ V i,i
i × {H}) ,

Li,i+1
k = (Li,i

k − V i,i
i ) ∪ (Li,i

k ∩ Li,i
i × [0,H]) ∪ (Li,i

k ∩ V i,i
i × {H}) .

Again we use the product metric of RN×R and R. The projection RN×R×R→
RN × R restricts to a retraction ri,i+1 : Xi,i+1

∗ → Xi,i . The control maps
pi,i+1
∗ : M i,i+1

∗ → Xi,i+1
∗ and pi,i+1 : M i,i+1 → Xi,i+1 are defined to be the

pullbacks of pi,i
∗ via ri,i+1 and ri,i+1|Xi,i+1 , respectively. Although V i,i

i+1 is not
a cone, it is homeomorphic to Vi+1 and has a topological cone structure. So
one can construct a homeomorphism from Xi,i+1 to Xi,i sending V i,i+1

k and
Li,i+1

k to V i,i and Li,i respectively, and hence a homeomorphism to X .

We can continue this to inductively obtain the metric space

Xi,j
∗ = Xi,j−1 ∪ (V i,j−1

j × [0,H])

as a subset of RN × Rj−i+1 , and its subsets Xi,j ⊃ V i,j
k ⊃ Li,j

k (k = j +
1, · · · ,m), together with control maps pi,j

∗ : M i,j
∗ → Xi,j

∗ , and pi,j : M i,j →
Xi,j . Topologically all the spaces Xi,j ’s are equal to X , and all the sets V i,j

k ’s
are equal to Vk . We are only changing the metric, the cell structure of X , and
the control map.
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Our next task is to do Alexander tricks at v1 , . . . , vm on these spaces instead
of X . Since ε′ ≤ δ0 ≤ δ , we can split the original complex c into two pieces on
V1 and the closure of its complements by a λε′ cobordism. Now we construct
a tower: we make copies of the trivial cobordism from the pair on (V1, L1) to
itself and successively attach them to the cobordism along V1 × [0,H]. This is
actually done on M1,1

∗ .

We use enough layers so that the result is a projective cobordism of radius µλε′

measured on X1,1
∗ from c = c̄0 to a complex c′1 on p1,1 . Recall µ = 100 and

it comes from taking a union of Poincaré cobordisms. As described in previous
sections, we can replace this by a free cobordism of radius µλ2ε′ from c to a
free complex c̄1 on p1,1 .

We postpone the squeezing to a later stage and go ahead to perform Alexander
trick over V 1,1

2 ⊂ X1,1 on c̄1 . Although X1,1 has a different metric from X ,
the difference lies along the cylinder L1 × [0, H]. If H is sufficiently large,
then a rectification for X1,1 can be easily constructed from those for X and
[0,H], and the δ and λ for X works also for X1,1 . Since µλ2ε′ ≤ δ , we can
do splitting and cut out the portion on V 1,1

2 by a µλ3ε′ cobordism. Again use
enough copies of this to get a µ2λ3ε′ cobordism on p1,2

∗ to a complex c̄′2 on p1,2

and then replace this by free µ2λ4ε′ cobordism to a free complex c̄2 on p1,2 .
Since ε′ ≤ δ0 , we can continue this process to obtain a consecutive sequence of
free cobordisms:

c = c̄0
µλ2ε′

X1,1
∗

c̄1
(µλ2)2ε′

X1,2
∗

c̄2 . . . c̄m−2
(µλ2)m−1ε′

X1,m−1
∗

c̄m−1
(µλ2)mε′

X1,m
∗

c̄m

Now we construct a map S1,m : X1,m → X and a map S̃1,m : M1,m → M which
covers S1,m so that the functorial image of c̄m has the desired property. This
is done by inductively constructing maps Si,j

∗ : Xi,j
∗ → X and its restriction

Geometry & Topology Monographs, Volume X (20XX)
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Si,j : Xi,j → X covered by maps S̃i,j
∗ : M i,j

∗ → M and S̃i,j : M i,j → M ,
respectively, for certain pairs j ≥ i.

First we define Si,i
∗ : Xi,i

∗ → X . Let us recall that Si ⊂ Vi denotes the stable
set at vi . Using the strong deformation retraction si,t : Vi → Vi , define a map
S′i : Xi,i

∗ → Xi,i
∗ by:

(x, h) 7→
{

(x, 0) if x ∈ X and h = 0,
(si,h/H(x), h) if x ∈ Vi and h > 0 .

This map is covered by a map S̃′i : M i,i
∗ → M i,i

∗ .

Lemma 6 S′i has Lipschitz constant K + 1.

Proof This is obtained by applying Lemma 4 to the sets of the form {x} ∪ Vi

for x ∈ X − Vi , extending the map si on x by si(x) = x.

Si,i
∗ : Xi,i

∗ → X is defined by composing S′i with the projection ri,i : Xi,i
∗ → X .

It has Lipschitz constant K+1. Since ri,i is obviously covered by a map M i,i
∗ →

M , the map Si,i
∗ is covered by a map S̃i,i

∗ : M i,i
∗ → M . Define Si,i : Xi,i → X

to be the restriction of Si,i
∗ .

Now recall that X1,2
∗ and X2,2

∗ are obtained by attaching V 1,1
2 × [0,H] and

V2 × [0,H] to X1,1 and X , respectively. Since S1,1 : X1,1 → X maps V 1,1
2

to V2 , the product map S1,1 × 1[0,H] : X1,1 × [0,H] → X × [0,H] restricts
to a map S1,1 × 1| : X1,2

∗ → X2,2
∗ . Compose this with S2,2

∗ : X2,2
∗ → X to

define S1,2
∗ : X1,2 → X which is covered by a map S̃1,2

∗ : M1,2
∗ → M . Continue

this process as in the following diagram to eventually get the desired map
S1,m : X1,m → X .

X1,j−1 S1,j−1
//

� _

²²

X� _

²²

X1,j
∗

S1,j−1×1|
//

S1,j
∗

55Xj,j
∗

Sj,j
∗ // X

X1,j
� ?

OO

S1,j
// X

Recall that there is a topological identification of X1,m with X . So we can think
of S1,m to be a map from X to X equipped with different metrics. Although
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16 Erik Kjær Pedersen and Masayuki Yamasaki

it is not a homeomorphism, it preserves all the simplices, i.e. S1,m(∆) = ∆
for every simplex ∆ of X . When restricted to a simplex, S1,m has Lipschitz
constant (K + 1)md/H .

�

��

��� � �
� � � ��

�
	� � � � � � �

�

�� � � � � � �� � � �

The three pictures above illustrate the application of S1,1 to X1,1 . The thin
solid lines in the rightmost picture indicate the direction in which controls are
obtained.

The three pictures below illustrate the application of S1,2 to X1,2 . The leftmost
picture shows the image (S1,1 × 1)(X1,2) = X2,2 . Again the thin solid lines on
the faces indicate the directions in which controls are obtained.

�

��

��� � �� � � ��
�
	� � � � � � �

�

�� � � � � � �� � � �
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Let us consider the functorial image cm of c̄m by the map S̃1,m : M1,m → M .
Recall that c̄m has radius ε′′ = (µλ2)mε′ . Take a ball B of radius ε′′ with in
X1,m . B is the union of subsets B∩∆ each having diameter 2ε′′ , where ∆ are
the simplices of X1,m . The images of B ∩∆ in X by S1,m all have diameter
2(K + 1)mε′′d/H and their union S1,m(B) is connected. Therefore S1,m(B)
has diameter 2](X)(K + 1)mε′′d/H . Thus cm has radius

4](X)(K + 1)m(µλ2)mε′d/H ,

and this is smaller than ε by the choice of H .

It remains to find a constant κ such that c and cm are κε′ cobordant. Define a
complex ci on pX to be the functorial image of c̄i by the map S̃1,i : M1,i → M .
The functorial image of the (µλ2)iε′ cobordism between c̄i−1 and c̄i by the map
S̃1,i
∗ gives a 4](X)(K +1)i(µλ2)iε′ cobordism between ci−1 and ci . Composing

these we get a 4µ](X)(K + 1)m(µλ2)mε′ cobordism between c and cm . Thus
κ = 4µ](X)(K + 1)m(µλ2)m works. This completes the proof.

Note that Lemma 5 implies that the relax-control map in Theorem 1 is surjec-
tive: Take an element [c′] ∈ Lδ′,ε′

n (X; pX , R) with δ′ ≤ δ0 . Then the inequality
ε′ ≤ δ0 holds and therefore there is a Poincaré cobordism of radius κε′ (≤ δ0 )
from c′ to a quadratic Poincaré complex c of radius ε, determining an element
[c] ∈ Lδ,ε

n (X; pX , R) whose image under the relax-control map is [c′].

Squeezing for complexes can be generalized to squeezing for pairs.

Lemma 7 (Squeezing of Quadratic Poincaré Pairs) Let n ≥ 2 be an integer
and X be a finite polyhedron. There exist constants δ0 > 0 and κ > 1 such
that the following hold: If δ < ε′ ≤ δ′ ≤ δ0 , then any (n + 1)-dimensional
quadratic Poincaré R-module pair of radius δ′ on a polyhedral stratified system
of fibrations over X with ε′ Poincaré boundary is κδ′ Poincaré cobordant to a
quadratic Poincaré pair of radius ε. The cobordism between the boundary is
κε′ Poincaré.

Proof Same as the proof of Lemma 5. Use the Alexander trick for pairs.

Corollary 8 (Relative Squeezing of Quadratic Poincaré Pairs) Let n ≥ 2 be
an integer and X be a finite polyhedron. There exist constants δ0 > 0 and
κ > 1 such that the following hold: If κε < δ′ ≤ δ0 , then any (n+1)-dimensional
quadratic Poincaré R-module pair of radius δ′ on a polyhedral stratified system
of fibrations over X with an ε Poincaré boundary is κδ′ Poincaré cobordant
fixing the boundary to a quadratic Poincaré pair of radius κε.
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18 Erik Kjær Pedersen and Masayuki Yamasaki

Proof Temporarily choose δ0 and κ as in Lemma 7. Suppose κε < δ′ ≤ δ0 ,
and let d = (f : C → D, (δψ, ψ)) be an (n+1)-dimensional quadratic Poincaré
pair of radius δ′ , and assume that (C, ψ) is ε Poincaré. Choose a positive
number ε′ < ε. By Lemma 7, d is κδ′ cobordant to a quadratic Poincaré pair
d′ = (f ′ : C ′ → D′, (δψ′, ψ′)) of radius ε. Glue d′ to the κε Poincaré cobordism
between (C, ψ) and (C ′, ψ′) to get a quadratic Poincaré pair d′′ = (f ′′ : C →
D′′, (δψ′′, ψ)) of radius 100κε. By construction, d ∪ −d′′ is 100κδ′ Poincaré
null-cobordant. Thus 100κ works as the κ in the statement of the lemma.

The injectivity of the relax-control map follows from this: Temporarily let δ0

and κ be as in Corollary 8, and suppose δ ≤ δ′ , ε ≤ ε′ , κε ≤ δ . Take an
element [c] in the kernel of the relax control map

Lδ,ε
n (X; pX , R) → Lδ′,ε′

n (X; pX , R) .

By Proposition 2, the quadratic complex c = (C,ψ) of radius ε′ is the boundary
of an (n+1)-dimensional quadratic Poincaré pair (f : C → D, (δψ, ψ)) of radius
100δ′ . If δ′ ≤ δ0/100, then κε ≤ 100δ′ ≤ δ0 , and by Corollary 8 the element
[c] is 0 in Lκε,ε

n (X; pX , R), and hence also in Lδ,ε
n (X; pX , R). So, by replacing

δ0 with δ0/100, we established the desired injectivity. This finishes the proof
of Theorem 1.

6 Variations

6.1 Projective L-groups

There is a controlled analogue of projective Lp -groups. Lp,δ,ε
n (X; pX , R) is de-

fined using ε Poincaré ε quadratic projective R-module complexes on pX and
δ Poincaré δ projective cobordisms. Similar stability results hold for these.

To get a squeezing result in the Lp -group case, we first take the tensor product of
the given projective quadratic Poincaré complex c with the symmetric complex
σ(S1) of the circle S1 . By replacing it with a finite cover if necessary, we may
assume that the radius of σ(S1) is sufficiently small. If the radius of c is also
sufficiently small, we can construct a cobordism to a squeezed complex. Split
the cobordism along X ×{two points} ⊂ X ×S1 to get a projective cobordism
from the original complex to a squeezed projective complex.
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6.2 UV 1 control maps

When the control map is UV 1 , there is no need to use paths to define morphisms
between geometric modules [4]. This simplifies the situation quite a lot, and
we have:

Proposition 9 Let pX : M → X be a UV 1 map to a finite polyhedron. Then
for any pair of positive numbers δ ≥ ε, there is an isomorphism

Lδ,ε
n (X; pX , R) ∼= Lδ,ε

n (X; 1X , R)

for any ring with involution R and any integer n ≥ 0.

By Theorem 1, the stability holds for Lδ,ε
n (X; 1X , R) and hence the stability

holds also for Lδ,ε
n (X; pX , R).

6.3 Compact metric ANR’s

Squeezing and stability also hold when X is a compact metric ANR, and the
control map is a fibration. To see this, embed X in the Hilbert cube I∞ .
There is a closed neighborhood U of X of the form P × I∞−N , where P is a
polyhedron in IN . Use the fact that the retraction from U to X is uniformly
continuous to deduce the desired stability from the stability on P and U .

7 Relations to Bounded L-Theory

In this section we shall identify the controlled L-theory groups with a bounded
L-theory group, at least in the case of constant coefficients. The main advantage
to having a bounded controlled description, is that it facilitates computations.

Definition 10 Let X be a finite polyhedron and R a ring with involution.
Let pX : X × K → X be a trivial fibration. We denote the common value
of Lδ,ε

n (X; pX , R) for small values of δ and ε, which exists by Theorem 1, by
Lh,c

n (X; pX , R). Here the h signifies that we have no simpleness condition and
the c stands for controlled.

We may embed the finite polyhedron X in a large dimensional sphere Sn and
consider the open cone O(X) = {t · x ∈ Rn+1|t ∈ [0,∞), x ∈ X}. We denote
X with a disjoint basepoint added by X+ .
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Theorem 11 Let pX : X ×K → X be as above, π = π1(K), R a ring with
involution. Then

Lc,h
n (X; pX , R) ∼= Ls

n+1(CO(X+)(R[π]))

where CO(X+)(R[π]) denotes the category of free R[π] modules parameterized
by O(X+) and bounded morphisms.

Proof Given an element in Lc,h
n (X; pX , R), we can choose a stable (δ, ε) rep-

resentative. Crossing with the symmetric chain complex of (−∞, 0] produces a
bounded quadratic chain complex when we parameterize it by O(+), which is
obviously a half line, with + being the extra basepoint. According to Theorem
1, we may produce a sequence of bordisms to increasingly smaller representa-
tives of the given element in Lc,h

n (X; pX , R). These bordisms may be parame-
terized by {t ·x|x ∈ X, ai < t < ai+1} where the sequence of ai ’s is chosen such
that when these bordisms are glued together, we obtain a bounded quadratic
complex parameterized by O(X+). We get an s-decoration because obviously
we can split the bounded quadratic complex. The map in the opposite direction
is given by a splitting obtained the same way as in Lemma 3.

One advantage of a categorical description is computational. We have as close
an analogue to excision as is possible in the following: Let Y be a subcomplex
of X , and S a ring with involution. We then get a sequence of categories

CO(Y+)(S) → CO(X+)(S) → CO(X/Y )(S)

which leads to a long exact sequence

. . . → La
n(CO(Y+)(S)) → Lb

n(CO(X+)(S)) → Lc
n(CO(X/Y )(S)) → . . .

where the rule to determine the decorations is that b can be chosen to be any
involution preserving subgroup of Ki(CO(X+)(S)), i ≤ 2, but then c has to be
the image in Ki(CO(Xi/Y )(S)), and a has to be the preimage in Ki(CO(Y+)(S)).
See [1] for a derivation of these exact sequences. This makes it possible to do
extensive calculations with controlled L-groups.
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