# HYPERBOLIC KNOTS AND 4-DIMENSIONAL SURGERY

### MASAYUKI YAMASAKI

## 1. Introduction

In [5], Hegenbarth and Repovš used controlled surgery exact sequence of [6] to show that the surgery obstruction theory works for certain 4-manifolds without assuming that the fundamental groups are good. Among their examples are 4-manifolds whose fundamental groups are knot groups. Let K be a knot in  $S^3$ , and let E(K) deenote its exterior. Let M(K) denote the 4-manifold  $\partial(E(K) \times D^2)$ . Hegenbarth and Repovš showed that the surgery obstruction theory works in the topological category when K is a torus knot. The aim of this short note is to show that their strategy also works when K is a hyperbolic knot:

**Theorem 1.** The TOP-surgery sequence

$$S(M(K)) \longrightarrow [M(K), G/TOP] \longrightarrow L_4(\pi_1(M(K)))$$

is exact when K is a hyperbolic knot.

The author would like to thank Sadayoshi Kojima for teaching him about the Epstein-Penner canonical decomposition.

# 2. Proof of Theorem 1

Let K be a hyperbolic knot in  $S^3$ . Consider the Epstein-Penner canonical decomposition of  $S^3-K$  into ideal polyhedra [3]. It induces a decomposition of E(X) into truncated polyhedra. The cut-locus B with respect to the cusp is the dual of these decompositions, and is the spine for E(K). B is also a spine of  $E(X) \times D^2$ , and the restriction  $\pi$  of the collapsing map  $E(X) \times D^2 \to B$  to M(K) is  $UV^1$ , since each point inverse is the union of finitely many copies of 2-discs whose boundaries are identified.

The rest of the proof is exactly the same as the one given in [5]. We give the outline for the convenience of the reader. Since the map  $\pi: M(K) \to B$  is  $UV^1$ , there is a commutative diagram

$$S_{\epsilon,\delta}(M(K)) \longrightarrow [M(K), G/TOP] \longrightarrow H_4(B; \mathbb{L})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow A$$

$$S(M(K)) \longrightarrow [M(K), G/TOP] \longrightarrow L_4(\pi_1(B))$$

for sufficiently small  $\epsilon \gg \delta > 0$ . The first row is the controlled surgery sequence with trivial local fundamental groups and is exact [6]. The second row is the ordinary surgery sequence we are interested in.

The assembly map A for B is an isomorphism. This can be observed in the following way. Recall that B is a homology circle; let  $\phi: B \to S^1$  be a homology equivalence. This map induces a commutative diagram whose top arrow is an

1

isomorphism.

$$H_4(B; \mathbb{L}) \xrightarrow{\phi_*} H_4(S^1; \mathbb{L})$$

$$\downarrow A \qquad \qquad \downarrow A$$

$$L_4(\pi_1(B)) \xrightarrow{\phi_*} L_4(\pi_1(S^1))$$

Arvinda, Farrell, and Roushon showed that the bottom row is also an isomorphism [1], and the assembly map A for  $S^1$  has been known to be an isomorphism [2] [4]. Therefore, the assembly map  $A: H_4(B; \mathbb{L}) \to L_4(\pi_1(B))$  for B is also an isomorphism.

Now a simple diagram chase shows that the ordinary surgery sequence is also exact. This completes the proof of Theorem 1.

# References

- C S Arvinda, F T Farrell, S K Roushon, Surgery groups of knot and link complements, Bull. London Math. Soc. 29 (1997) 400 – 406
- 2. W Browder, Manifolds with  $\pi_1 = \mathbb{Z}$ , Bull. Amer. Math. Soc. 72 (1966) 238 244.
- D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds,
   J. Differential Geom. 27 (1988), 67-80
- F T Farrell, L E Jones, Topological rigidity for compact nonpositively curved manifolds, Proc. Sympos. Pure Math. 54, Part 3 (Amer. Math. Soc., Providence, RI, 1993) 229 – 274
- 5. F Hegenbarth, D Repovš, Applications of controlled surgery in dimension 4: Examples, preprint
- E Pedersen, F Quinn, A Ranicki, Controlled surgery with trivial local fundamental groups, High dimensional manifold topology, Proceedings of the conference, ICTP, Trieste Italy, World Scientific (2003) 421 – 426

DEPARTMENT OF APPLIED SCIENCE, OKAYAMA UNIVERSITY OF SCIENCE, OKAYAMA, OKAYAMA 700-0005, JAPAN