
Controlled L-Theory
(Preliminary announcement)

A. Ranicki and M. Yamasaki

Introduction.

This is a preliminary announcement of a controlled algebraic surgery theory, of
the type first proposed by Quinn [1]. We define and study the ε-controlled L-groups
Ln(X, pX , ε), extending to L-theory the controlledK-theory of Ranicki and Yamasaki
[4].

The most immediate application of the algebra to controlled geometric surgery
is the controlled surgery obstruction: a normal map (f, b) : K → L from a closed
n-dimensional manifold to a δ-controlled Poincaré complex determines an element

σδ∗(f, b) ∈ Ln(X, 1X , 100δ) .

(The construction in Ranicki and Yamasaki [3] can be used to produce a 6ε n-
dimensional quadratic Poincaré structure on an (n + 1)-dimensional chain complex.
There is a chain equivalence from this to an n-dimensional chain complex with a 100δ
n-dimensional quadratic Poincaré structure, and σδ∗(f, b) is the cobordism class of
this complex in Ln(X, 1X , 100δ) .) A relative construction shows that if (f, b) can be
made into a δ-controlled homotopy equivalence by δ-controlled surgery then

σδ∗(f, b) = 0 ∈ Ln(X, 1X , 100δ) .

Conversely, if n ≥ 5 and (f, b) is such that

σδ∗(f, b) = 0 ∈ Ln(X, 1X , 100δ)

then (f, b) can be made into an ε-controlled homotopy equivalence by ε-controlled
surgery, where ε = C × 100δ for a certain constant C > 1 that depends on n. Proofs
of difficult results and the applications of the algebra to topology are deferred to the
final account.

The algebraic properties required to obtain these applications include the con-
trolled L-theory analogues of the homology exact sequence of a pair (3.1, 3.2) and
the Mayer-Vietoris sequence (3.3, 3.4).

The limit of the controlled L-groups

Lcn(X; 1X) = lim←−
ε

lim←−
δ

im{Ln(X, 1X , δ) −−→ Ln(X, 1X , ε)}

is the obstruction group for controlled surgery to ε-controlled homotopy equivalence
for all ε > 0.

119



120 A. RANICKI AND M. YAMASAKI

Theorem. (5.4.) Fix a compact polyhedron X and an integer n(≥ 0). There exist

numbers ε0 > 0 and 0 < µ0 ≤ 1 such that

Lcn(X; 1X) = im{Ln(X, 1X , δ) −−→ Ln(X, 1X , ε)}

for every ε ≤ ε0 and every δ ≤ µ0ε.

Throughout this paper all the modules are assumed to be finitely generated unless
otherwise stated explicitly. But note that all the definitions and the constructions are
valid also for possibly-infinitely-generated modules and chain complexes. Actually we
heavily use finite dimensional but infinitely generated chain complexes in the later
part of the paper. (That is where the bounded-control over R comes into the game.)
So we first pretend that everything is finitely generated, and later we introduce a
possibly-infinitely-generated analogue without any details.

1. Epsilon-controlled L-groups.

In this section we introduce ε-controlled L-groups Ln(X, pX , ε) and Ln(X,Y, pX , ε) for
pX : M → X, Y ⊂ X, n ≥ 0, ε > 0. These are defined using geometric module chain
complexes with quadratic Poincaré structures, which were discussed in Yamasaki [5].

We use the convention in Ranicki and Yamasaki [4] for radii of geometric mor-
phisms, etc. The dual of a geometric module is the geometric module itself, and the
dual of a geometric morphism is defined by reversing the orientation of paths. Note
that if f has radius ε then so does its dual f∗ and that f ∼ε g implies f∗ ∼ε g∗, by
our convention. For a geometric module chain complex C, its dual Cn−∗ is defined
using the sign convention used in Ranicki [2].

For a subset S of a metric space X, Sε will denote the closed ε neighborhood of
S in X when ε ≥ 0. When ε < 0, Sε will denote the set X − (X − S)−ε.

Let C be a free chain complex on pX : M → X. An n-dimensional ε quadratic

structure ψ on C is a collection {ψs|s ≥ 0} of geometric morphisms

ψs : Cn−r−s = (Cn−r−s)∗ → Cr (r ∈ Z)

of radius ε such that

(∗) dψs + (−)rψsd∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1) ∼3ε 0 : Cn−r−s−1 → Cr,

for s ≥ 0. An n-dimensional free ε chain complex C on pX equipped with an n-
dimensional ε quadratic structure is called an n-dimensional ε quadratic complex on

pX . (Here, a complex C is n-dimensional if Ci = 0 for i < 0 and i > n.)
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Next let f : C → D be a chain map between free chain complexes on pX . An
(n+ 1)-dimensional ε quadratic structure (δψ, ψ) on f is a collection {δψs, ψs|s ≥ 0}
of geometric morphisms

δψs : Dn+1−r−s → Dr , ψs : Cn−r−s → Cr (r ∈ Z)

of radius ε such that the following holds in addition to (∗):
d(δψs) + (−)r(δψs)d∗ + (−)n−s(δψs+1 + (−)s+1Tδψs+1) + (−)nfψsf∗ ∼3ε 0

: Dn−r−s → Dr (s ≥ 0) .

An ε chain map f : C → D between an n-dimensional free ε chain complex C on pX
and an (n+ 1)-dimensional free ε chain complex D on pX equipped with an (n+ 1)-
dimensional ε quadratic structure is called an (n+1)-dimensional ε quadratic pair on

pX . Obviously its boundary (C,ψ) is an n-dimensional ε quadratic complex on pX .
An ε cobordism of n-dimensional ε quadratic structures ψ on C and ψ′ on C ′

is an (n + 1)-dimensional ε quadratic structure (δψ, ψ ⊕ −ψ′) on some chain map
C⊕C ′ → D. An ε cobordism of n-dimensional ε quadratic complexes (C,ψ), (C ′, ψ′)
on pX is an (n + 1)-dimensional ε quadratic pair on pX

(( f f ′ ) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′))

with boundary (C ⊕ C ′, ψ ⊕ −ψ′). The union of adjoining cobordisms are defined
using the formula in Chapter 1.7 of Ranicki [2]. The union of adjoining ε cobordisms
is a 2ε cobordism.

ΣC and ΩC will denote the suspension and the desuspension of C respectively,
and C(f) will denote the algebraic mapping cone of a chain map f .

Definition. Let W be a subset of X. An n-dimensional ε quadratic structure ψ on
C is ε Poincaré (over W ) if the algebraic mapping cone of the duality 3ε chain map

Dψ = (1 + T )ψ0 : Cn−∗ −−−−→ C

is 4ε contractible (over W ). A quadratic complex (C,ψ) is ε Poincaré (over W ) if ψ is
ε Poincaré (over W ). Similarly, an (n+ 1)-dimensional ε quadratic structure (δψ, ψ)
on f : C → D is ε Poincaré (over W ) if the algebraic mapping cone of the duality 4ε
chain map

D(δψ,ψ) = ((1 + T )δψ0 f(1 + T )ψ0) : C(f)n+1−∗ −−−−→ D

is 4ε contractible (over W ) (or equivalently the algebraic mapping cone of the 4ε chain
map

D̄(δψ,ψ) =
(

(1 + T )δψ0

(−)n+1−r(1 + T )ψ0f
∗

)
: Dn+1−r → C(f)r = Dr ⊕ Cr−1

is 4ε contractible (overW )) and ψ is ε Poincaré (overW ). A quadratic pair (f, (δψ, ψ))
is ε Poincaré (over W ) if (δψ, ψ) is ε Poincaré (over W ). We will also use the notation
Dδψ = (1 + T )δψ0, although it does not define a chain map from Dn+1−∗ to D in
general.
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Definition. (1) A positive geometric chain complex C (Ci = 0 for i < 0) is ε

connected if there exists a 4ε morphism h : C0 → C1 such that dh ∼8ε 1C0 .
(2) A chain map f : C → D of positive chain complexes is ε connected if C(f) is ε
connected.
(3) A quadratic complex (C,ψ) is ε connected if Dψ is ε connected.
(4) A quadratic pair (f : C → D, (δψ, ψ)) is ε connected if Dψ and D(δψ,ψ) are ε

connected.

Now we define the ε-controlled L-groups. Let Y be a subset of X.

Definition. For n ≥ 0 and ε ≥ 0, Ln(X,Y, pX , ε) is defined to be the equivalence
classes of n-dimensional ε connected ε quadratic complexes on pX that are ε Poincaré
over X − Y . The equivalence relation is generated by ε connected ε cobordisms that
are ε Poincaré over X − Y . For Y = ∅ write

Ln(X, pX , ε) = Ln(X, ∅, pX, ε) .
Remarks. (1) We use only n-dimensional complexes and not the complexes chain
equivalent to n-dimensional ones in order to make sure we have size control on some
constructions.
(2) The ε connectedness condition is automatic for complexes that are ε Poincaré over
X. Connectedness condition is used to insure that the boundary ∂C = ΩC(Dψ) is
chain equivalent to a positive one. There is a quadratic structure ∂ψ for ∂C so that
(∂C, ∂ψ) is Poincaré (Ranicki [2]).
(3) Using locally-finitely generated chain complexes on M , one can similarly define
ε-controlled locally-finite L-groups Llf

n(X,Y, pX , ε). All the results in sections 1 – 3
are valid for locally-finite L-groups.

Proposition 1.1. The direct sum

(C,ψ)⊕ (C ′, ψ′) = (C ⊕ C′, ψ ⊕ ψ′)

induces an abelian group structure on Ln(X,Y, pX , ε). Furthermore, if

[C,ψ] = [C ′, ψ′] ∈ Ln(X,Y, pX , ε) ,

then there is a 100ε connected 2ε cobordism between (C,ψ) and (C′, ψ′) that is 100ε
Poincaré over X − Y 100ε.

Next we study the functoriality. A map between control maps pX : M → X and
pY : N → Y means a pair of continuous maps (f : M → N, f̄ : X → Y ) which makes
the following diagram commute:

M //
f

��

pX

N

��

pY

X //

f̄
Y.



CONTROLLED L-THEORY 123

For example, given a control map pY : N → Y and a subset X ⊂ Y , let us denote the
control map pY |p−1

Y (X) : p−1
Y (X) → X by pX : M → X. Then the inclusion maps

j : M → N , j̄ : X → Y form a map form pX to pY .
Epsilon controlled L-groups are functorial with respect to maps and relaxation

of control in the following sense.

Proposition 1.2. Let F = (f, f̄ ) be a map from pX : M → X to pY : N → Y , and

suppose that f̄ is Lipschitz continuous with Lipschitz constant λ, i.e., there exists a

constant λ > 0 such that

d(f̄(x1), f̄(x2)) ≤ λd(x1, x2) (x1, x2 ∈ X).

Then F induces a homomorphism

F∗ : Ln(X,X′, pX , δ) −−−−→ Ln(Y, Y ′, pY , ε)

if ε ≥ λδ and f̄ (X′) ⊂ Y ′. If two maps F = (f, f̄ ) and G = (g, ḡ) are homotopic

through maps Ht = (ht, h̄t) such that each h̄t is Lipschitz continuous with Lipschitz

constant λ, ε ≥ λδ, ε′ > ε, and h̄t(X′) ⊂ Y ′, then the following two compositions are

the same:

Ln(X,X′, pX , δ)
F∗−→ Ln(Y, Y ′, pY , ε) −−−−→ Ln(Y, Y ′, pY , ε′)

Ln(X,X′, pX , δ)
G∗−−→ Ln(Y, Y ′, pY , ε) −−−−→ Ln(Y, Y ′, pY , ε′)

Proof: The direct image construction for geometric modules and morphisms [4, p.7]
can be used to define the direct images f#(C,ψ) of quadratic complexes and the direct
images of cobordism. And this induces the desired F∗. The first part is obvious. For
the second part, split the homotopy in small pieces to construct small cobordisms.
The size of the cobordism may be slightly bigger than the size of the object itself.

Remark. The above is stated for Lipschitz continuous maps to simplify the state-
ment. For a specific δ and a specific ε, the following condition, instead of the Lipschitz
condition above, is sufficient for the existence of F∗ :

d(f̄(x1), f̄(x2)) ≤ kε whenever d(x1, x2) ≤ kδ,

for a certain finite set of integers k (more precisely, for k = 1, 3, 4, 8)

and similarly for the isomorphism in the second part. When X is compact and ε is
given, the continuity of f̄ implies that this condition is satisfied for sufficiently small
δ’s. [Use the continuity of the distance function d : X ×X → R and the compactness
of the diagonal set ∆ ⊂ X × X.] And, in the second half of the proposition, there
are cases when the equality F∗ = G∗ holds without composing with the relax-control
map; e.g., see 4.1.
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We are interested in the “limit” of ε-controlled L-groups.

Definition. Let pX : M → X be a control map.
(1) Let ε, δ be positive numbers such that δ ≤ ε. We define:

Lεn(X, pX , δ) = im{Ln(X, pX , δ)−−→Ln(X, pX , ε)}.

(2) For ε > 0, we define the stable ε-controlled L-group of X with coefficient pX by:

Lεn(X; pX) :=
⋂

0<δ<ε

Lεn(X, pX , δ).

(3) The controlled L-group with coefficient pX is defined by:

Lcn(X; pX) := lim←−
ε

Lεn(X; pX),

where the limit is taken with respect to the obvious relax-control maps:

Lε
′
n (X; pX) −−→ Lεn(X; pX), (ε′ < ε).

In section 5, we study a certain stability result for the controlled L-groups in
some special case.

2. Epsilon-controlled projective L-groups.

Fix a subset Y of X, and let F be a family of subsets of X such that Z ⊃ Y

for each Z ∈ F . In this section we introduce intermediate ε-controlled L-groups
LF
n (Y, pX , ε), which will appear in the stable-exact sequence of a pair and also in

the Mayer-Vietoris sequence. Roughly speaking, these are defined using “controlled
projective quadratic chain complexes” ((C, p), ψ) with vanishing ε-controlled reduced
projective class [C, p] = 0 ∈ K̃0(Z, pZ , n, ε) (Ranicki and Yamasaki [4]) for each
Z ∈ F . Here pZ denotes the restriction pX |p−1

X (Z) : p−1
X (Z) → Z of pX as in the

previous section.

For a projective module (A, p) on pX , its dual (A, p)∗ is the projective module
(A∗, p∗) on pX . If f : (A, p) → (B, q) is an ε morphism ([4]), then f ∗ : (B, q)∗ →
(A, p)∗ is also an ε morphism. For an ε projective chain complex on pX

(C, p) : . . . −−→ (Cr, pr)
dr−→ (Cr−1, pr−1)

dr−1−−−→ . . .

in the sense of [4], (C, p)n−∗ will denote the ε projective chain complex on pX defined
by:
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. . . −−→ (Cn−r, p∗n−r)
(−)rd∗n−r+1−−−−−−−→ (Cn−r+1, p∗n−r+1) −−→ . . . .

An n-dimensional ε quadratic structure on a projective chain complex (C, p) on
pX is an n-dimensional ε quadratic structure ψ on C (in the sense of §1) such that
ψs : (Cn−r−s, p∗) → (Cr, p) is an ε morphism for every s ≥ 0 and r ∈ Z. Similarly,
an (n + 1)-dimensional ε quadratic structure on a chain map f : (C, p) → (D, q)
is an (n + 1)-dimensional ε quadratic structure (δψ, ψ) on f : C → D such that
δψs : (Dn+1−r−s , q∗) → (Dr , q) and ψs : (Cn−r−s, p∗) → (Cr, p) are ε morphisms for
every s ≥ 0 and r ∈ Z. An n-dimensional ε projective chain complex (C, p) on pX
equipped with an n-dimensional ε quadratic structure is called an n-dimensional ε

projective quadratic complex on pX , and an ε chain map f : (C, p)→ (D, q) between
an n-dimensional ε projective chain complex (C, p) on pX and an (n+ 1)-dimensional
ε projective chain complex (D, q) on pX equipped with an (n + 1)-dimensional ε
quadratic structure is called an (n+1)-dimensional ε projective quadratic pair on pX .

An ε cobordism of n-dimensional ε projective quadratic complexes ((C, p), ψ),
((C ′, p′), ψ′) on pX is an (n+ 1)-dimensional ε projective quadratic pair on pX

(( f f ′ ) : (C, p)⊕ (C ′, p′)−−→(D, q), (δψ, ψ ⊕−ψ′))

with boundary ((C, p)⊕ (C ′, p′), ψ ⊕ −ψ′).
An n-dimensional ε quadratic structure ψ on (C, p) is ε Poincaré if

∂(C, p) = ΩC((1 + T )ψ0 : (Cn−∗, p∗)−−→(C, p))

is 4ε contractible. ((C, p), ψ) is ε Poincaré if ψ is ε Poincaré. Similarly, an (n + 1)-
dimensional ε quadratic structure (δψ, ψ) on f : (C, p)→ (D, q) is ε Poincaré if ∂(C, p)
and

∂(D, q) = ΩC(((1 + T )δψ0 f(1 + T )ψ0) : C(f)n+1−∗−−→(D, q))

are both 4ε contractible. A pair (f, (δψ, ψ)) is ε Poincaré if (δψ, ψ) is ε Poincaré.

Let Y and be a subset of X and F be a family of subsets of X such that Z ⊃ Y

for every Z ∈ F .

Definition. Let n ≥ 0 and ε ≥ 0. LF
n (Y, pX , ε) is the equivalence classes of n-

dimensional ε Poincaré ε projective quadratic complexes ((C, p), ψ) on pY such that
[C, p] = 0 in K̃0(Z, pZ, n, ε) for each Z ∈ F . The equivalence relation is generated by
ε Poincaré ε cobordisms (( f f′ ) : (C, p)⊕ (C ′, p′) → (D, q), (δψ, ψ ⊕ −ψ′)) on pY
such that [D, q] = 0 in K̃0(Z, pZ, n+ 1, ε) for each Z ∈ F . When F = {X}, we omit
the braces and write LXn (Y, pX , ε) instead of L{X}

n (Y, pX , ε). When F = { }, then we
use the notation Lpn(Y, pY , ε), since it depends only on pY .
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Proposition 2.1. Direct sum induces an abelian group structure on LF
n (Y, pX , ε).

Furthermore, if

[(C, p), ψ] = [(C ′, p′), ψ′] ∈ LF
n (Y, pX , ε) ,

then there is a 100ε Poincaré 2ε cobordism on pY

(( f f ′ ) : (C, p)⊕ (C ′, p′)→ (D, q), (δψ, ψ ⊕−ψ′))

such that [D, q] = 0 in K̃0(Z, pZ, n+ 1, 9ε) for each Z ∈ F .

A functoriality with respect to maps and relaxation of control similar to 1.2 holds
for epsilon controlled projective L-groups.

Proposition 2.2. Let F = (f, f̄ ) be a map from pX : M → X to pY : N → Y , and

suppose that f̄ is Lipschitz continuous with Lipschitz constant λ, i.e., there exists a

constant λ > 0 such that

d(f̄(x1), f̄(x2)) ≤ λd(x1, x2) (x1, x2 ∈ X).

If ε ≥ λδ, f̄ (A) ⊂ B, and there exists a Z ∈ F satisfying f̄(Z) ⊂ Z′ for each Z′ ∈ F ′,
then F induces a homomorphism

F∗ : LF
n (A, pX , δ) −−−−→ LF ′

n (B, pY , ε).

Remark. As in the remark to 1.2, for a specific δ and a ε, we do not need the full
Lipschitz condition to guarantee the existence of F∗.

There is an obvious homomorphism

ιε : Ln(Y, pY , ε) −−−−→ LF
n (Y, pX , ε); [C,ψ] 7→ [(C, 1), ψ].

On the other hand, the controlled K-theoretic condition posed in the definition can
be used to construct a homomorphism from a projective L-group to a free L-group:

Proposition 2.3. There exist a constant α > 1 such that the following holds true:

for any control map pX : M → X, any subset Y ⊂ X, any family of subsets F of X

containing Y , any element Z of F , any number n ≥ 0, and any positive numbers δ,

ε such that ε ≥ αδ, there is a well-defined homomorphism functorial with respect to

relaxation of control:

(iZ)∗ : LF
n (Y, pX , δ) −−−−→ Ln(Z, pZ, ε)

such that the following compositions are equal to the maps induced from inclusion

maps:

LF
n (Y, pX , δ)

(iZ)∗−−−→ Ln(Z, pZ , ε)
ιε−→ L{Z}

n (Z, pZ, ε) ,

Ln(Y, pY , δ)
ιδ−→ LF

n (Y, pX , δ)
(iZ)∗−−−→ Ln(Z, pZ , ε) .

Remark. Actually α = 30000 works.

3. Stably-exact sequences.
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In this section we describe two ‘stably-exact’ sequences. The first is the stably-exact
sequence of a pair:

∂..... LXn (Yn, pX , ε)
i∗...... Ln(X, pX , ε)

j∗−→ Ln(X,Y, pX , ε)
∂..... LXn−1(Y, pX , ε)

i∗......

where the dotted arrows are only ‘stably’ defined. The precise meaning will be ex-
plained below. The second is the Mayer-Vietoris-type stably-exact sequence:

∂..... LF
n (C, pX, ε)

i∗...... Ln(A, pA, ε)⊕Ln(B, pB, ε)
j∗−−→ Ln(X, pX , ε)

∂..... LF
n−1(C, pX, ε)

i∗......

where X = A ∪B, C = A ∩B, and F = {A,B}.
Fix an integer n ≥ 0, let Yn, Zn be subsets of X, and let γn, δn, εn be three

positive numbers satisfying

εn ≥ δn, δn ≥ αγn

where α is the number (> 1) posited in 2.3. Then there is a sequence

LXn (Yn, pX, γn)
i∗=(iX )∗−−−−−−→ Ln(X, pX , δn)

j∗−→ Ln(X,Zn, pX , εn),

where i∗ is the homomorphism given in 2.3 and j∗ is the homomorphism induced by
the inclusion map and relaxation of control. (The subscripts are there just to remind
the reader of the degrees of the relevant L-groups.)

Theorem 3.1. There exist constants κ0, κ1, κ2, . . . (> 1) which do not depend on

pX such that

(1) if n ≥ 0, Zn ⊃ Y κnδn
n , and εn ≥ κnδn, then the following composition j∗i∗ is

zero:

j∗i∗ = 0 : LXn (Yn, pX , γn)
i∗−→ Ln(X, pX , δn)

j∗−→ Ln(X,Zn, pX , εn),

(2) if n ≥ 1, Yn−1 ⊃ Zκnεn
n and γn−1 ≥ κnεn, then there is a connecting homomor-

phism

∂ : Ln(X,Zn, pX , εn) −−−−→ LXn−1(Yn−1, pX , γn−1),

such that the following composition ∂j∗ is zero:

∂j∗ = 0 : Ln(X, pX , δn)
j∗−→ Ln(X,Zn, pX , εn)

∂−−→ LXn−1(Yn−1, pX, γn−1),

and, if δn−1 ≥ αγn−1 (so that the homomorphism i∗ is well-defined), the following

composition i∗∂ is zero:

i∗∂ = 0 : Ln(X,Zn, pX , εn)
∂−−→ LXn−1(Yn−1, pX , γn−1)

i∗−→ Ln−1(X, pX , δn−1).
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Theorem 3.2. There exist constants λ0, λ1, λ2, . . . (> 1) which do not depend on

pX such that

(1) if n ≥ 0, δn ≥ αγn (so that i∗ is well-defined), ε′n+1 ≥ λnδn, Z ′
n+1 ⊃ Y λnδn

n ,

Y ′
n ⊃ Z′

n+1
κn+1ε

′
n+1 and γ′n ≥ κn+1ε

′
n+1 (so that ∂′ is well-defined), then the

image of the kernel of i∗ in LXn (Y ′
n, pX , γ

′
n) is in the image of ∂ ′:

LXn (Yn, pX , γn) //
i∗

��

Ln(X, pX , δn)

Ln+1(X,Z′
n+1, pX, ε

′
n+1) //

∂′
LXn (Y ′

n, pX , γ
′
n)

(2) if n ≥ 0, εn ≥ δn (so that j∗ is well-defined), Y ′
n ⊃ Zλnεn

n , γ′n ≥ λnεn, and

δ′n ≥ αγ′n (so that i′∗ is well-defined), then the image of the kernel of j∗ in

Ln(X, pX , δ′n) is in the image of i′∗:

Ln(X, pX , δn) //
j∗

��

Ln(X,Zn, pX , εn)

LXn (Y ′
n, pX , γ

′
n) //

i′∗
Ln(X, pX , δ′n)

(3) if n ≥ 1, γn−1 ≥ κnεn (so that ∂ is well-defined), ε′n ≥ λnγn−1, and Z ′
n ⊃

Y
λnγn−1
n−1 , then the image of the kernel of ∂ in Ln(X,Z′

n, pX , ε
′
n) is in the image

of j′∗:

Ln(X,Zn, pX , εn) //
∂

��

LXn−1(Yn−1, pX , γn−1)

Ln(X, pX , ε′n) //
j′∗

Ln(X,Z′
n, pX , ε

′
n)

Here the vertical maps are the homomorphisms induced by inclusion maps and relax-

ation of control.

Next we investigate the Mayer-Vietoris-type stably-exact sequence. Fix an inte-
ger n ≥ 0, and assume that X is the union of two closed subsets An and Bn with
intersection Cn = An ∩Bn. Suppose three positive numbers γn, δn, εn satisfy

δn ≥ αγn, εn ≥ δn,

and define a family Fn to be {An, Bn}. Then we have a sequence

LFn
n (Cn, pX , γn)

i∗−→ Ln(An, pAn, δn)⊕ Ln(Bn, pBn , δn)
j∗−→ Ln(X, pX , εn).
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Theorem 3.3. There exist constants κ0, κ1, κ2, . . . (> 1) which do not depend on

pX such that

(1) if n ≥ 0 and εn ≥ κnδn, then the following composition j∗i∗ is zero:

LFn
n (Cn, pX , γn)

i∗−→ Ln(An, pAn , δn) ⊕ Ln(Bn, pBn , δn)
j∗−→ Ln(X, pX , εn).

(2) if n ≥ 1, Cn−1 ⊃ Cκnεn
n , γn−1 ≥ κnεn, and if we set

Fn−1 = {An−1 = An ∪ Cn−1, Bn−1 = Bn ∪ Cn−1},
then there is a connecting homomorphism

∂ : Ln(X, pX , εn) −−−−→ L
Fn−1
n−1 (Cn−1, pX , γn−1),

such that the following composition ∂j∗ is zero:

Ln(An, p, δn)⊕ Ln(Bn , p, δn)
j∗−→ Ln(X, pX , εn)

∂−−→ L
Fn−1
n−1 (Cn−1, pX , γn−1),

and, if δn−1 ≥ αγn−1 (so that the homomorphism i∗ is well-defined), the following

composition i∗∂ is zero:

Ln(X, pX , εn)
∂−−→ L

Fn−1
n−1 (Cn−1,pX , γn−1)

i∗−→Ln−1(An−1, p, δn−1) ⊕ Ln−1(Bn−1, p, δn−1).

Theorem 3.4. There exist constants λ0, λ1, λ2, . . . (> 1) which do not depend on

pX such that

(1) if n ≥ 0, δn ≥ αγn (so that i∗ is well-defined), ε′n+1 ≥ λnδn, C ′
n ⊃ Cλnδn

n ,

γ′n ≥ κn+1ε
′
n+1 (so that ∂′ is well-defined), then the image of the kernel of i∗ in

L
F ′

n−1
n−1 (C ′

n−1, pX , γ
′
n−1) is in the image of ∂ ′:

LFn
n (Cn, pX , γn) //

i∗

��

Ln(An, p, δn)⊕ Ln(Bn, p, δn)

Ln+1(X, pX , ε′n+1) //
∂′

L
F ′

n
n (C ′

n, pX , γ
′
n)

(2) if n ≥ 0, εn ≥ δn (so that j∗ is well-defined), C ′
n ⊃ Cλnεn

n , γ′n ≥ λnεn, δ
′
n ≥ αγ′n

(so that i′∗ is well-defined), and F ′
n = {A′

n = An ∪ C ′
n, B

′
n = Bn ∪ C ′

n}, then the

image of the kernel of j∗ in Ln(A′
n, p, δ

′
n) ⊕ Ln(B′

n, p, δ
′
n) is in the image of i′∗:

Ln(An, p, δn)⊕ Ln(Bn, p, δn) //
j∗

��

Ln(X, pX , εn)

L
F ′

n
n (C ′

n, pX , γ
′
n) //

i′∗
Ln(A′

n, p, δ
′
n)⊕ Ln(B′

n, p, δ
′
n)



130 A. RANICKI AND M. YAMASAKI

(3) if n ≥ 1, Cn−1 ⊃ Cκnεn
n , γn−1 ≥ κnεn (so that ∂ is well-defined), ε′n ≥ λnγn−1,

C ′
n ⊃ C

λnγn−1
n−1 , A′

n = An ∪ C ′
n, and B′

n = Bn ∪ C ′
n, then the image of the kernel

of ∂ in Ln(X, pX , ε′n) is in the image of j ′∗:

Ln(X, pX , εn) //
∂

��

L
Fn−1
n−1 (Cn−1, pX , γn−1)

Ln(A′
n, p, ε

′
n) ⊕ Ln(B′

n, p, ε
′
n) //

j′∗
Ln(X, pX , ε′n)

Here the vertical maps are the homomorphisms induced by inclusion maps and relax-

ation of control.

Theorems 3.1 – 3.4 are all straightforward to prove.

4. Locally-finite analogues.

Up to this point, we considered only finitely generated modules and chain complexes.
To study the behaviour of controlled L-groups, we need to use infinitely generated
objects; such objects arise naturally when we take the pullback of a finitely generated
object via an infinite-sheeted covering map.

Consider a control map pX : M → X, and take the product with another metric
space N :

pX × 1N : M ×N−−→X ×N.
Here we use the maximum metric on the product X ×N .

Definition. (Ranicki and Yamasaki [4, p.14]) A geometric module on the product
space M × N is said to be M -finite if, for any y ∈ N , there is a neighbourhood U

of y in N such that M × U contains only finitely many basis elements; a projective
module (A, p) on M × N is said to be M -finite if A is M -finite; a projective chain
complex (C, p) on M × N is M -finite if each (Cr, pr) is M -finite. [ In [4], we used
the terminology “M -locally finite”, but this does not sound right and we decided to
use “M -finite” instead. “N -locally M -finite” may be describing the meaning better,
but it is too long.] When M is compact, M -finiteness is equivalent to the ordinary
locally-finiteness.

Definition. Using this notion, one can define M -finite ε-controlled L-groups LMn (X×
N, Y ×N, pX×1N , ε), andM -finite ε-controlled projective L-groups LM,Fn (Y ×N, pX×
1N , ε) by requiring that every chain complexes concerned are M -finite.

Consider the case when N = R. We would like to apply the M -finite version
of the Mayer-Vietoris-type stable exact sequence with respect to the splitting R =
(−∞, 0] ∪ [1,∞). The following says that one of the three terms in the sequence
vanishes.
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Proposition 4.1. Let pX : M → X be a control map. For any ε > 0 and r ∈ R,

LMn (X × (∞, r], pX × 1, ε) = LMn (X × [r,∞), pX × 1, ε) = 0.

K̃M
0 (X × (∞, r], pX × 1, n, ε) = K̃M

0 (X × [r,∞), pX × 1, n, ε) = 0.

Proof: This is done using repeated shifts towards infinity and the ‘Eilenberg Swindle’.
Let us consider the case of LMn (X × [r,∞), pX × 1, ε). Let J = [r,∞) and define
T : M×J →M×J by T (x, t) = (x, t+ε). Take an element [c] ∈ LMn (X×J, pX×1, ε).
It is zero, because there exist M -finite ε Poincaré cobordisms:

c ∼ c⊕ (T#(−c) ⊕ T2
#(c)) ⊕ (T3

#(−c) ⊕ T4
#(c)) ⊕ . . .

= (c⊕ T#(−c)) ⊕ (T2
#(c)⊕ T 3

#(−c)) ⊕ . . . ∼ 0 .

Thus, the Mayer-Vietoris stably-exact sequence reduces to:

0 −−→ LMn (X ×R, pX × 1R, ε)
∂−−→ Lpn−1(X × I, pX × 1I , γ) −−→ 0,

where γ = κnε, I = [−δ, δ], for some δ > 0. A diagram chase shows that there exists
a well-defined homomorphism:

β : Lpn−1(X × I, pX × 1I , γ) −−→ LMn (X ×R, pX × 1R, ε
′),

where ε′′ = λnκnλn−1αγ. The homomorphisms ∂ and β are stable inverses of each
other; the compositions

β∂ : LMn (X × R, pX × 1R, ε) −−−−→ LMn (X ×R, pX × 1R, ε
′)

∂β : Lpn−1(X × I, pX × 1I , γ) −−−−→ Lpn−1(X × I, pX × 1I , κnε′)

are both relax-control maps.
Note that, for any γ, a projective L-group analogue of 1.2 gives an isomorphism:

Lpn−1(X × I, pX × 1I , γ) ∼= Lpn−1(X × {0}, pX, γ).

In this case, no composition with relax-control map is necessary, because X × I is
given the maximum metric. Thus, we have obtained:

Theorem 4.2. There is a stable isomorphism:

LMn (X ×R, pX × 1R, ε) −−−−→ Lpn−1(X, pX , γ).

Similarly, we have:
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Theorem 4.3. There is a stable isomorphism:

Llf
n(X ×R, pX × 1R, ε) −−−−→ Lp,lfn−1(X, pX , γ).

5. Stability in a special case.

In this section we treat the special case when the control map is the identity map.
The following can be used to replace the controlled projective L-group terms in the
previous section by controlled L-groups.

Proposition 5.1. Suppose that Y (⊂ X) is a compact polyhedron or a compact

metric ANR embedded in the Hilbert cube and that pY is the identity map 1Y on Y .

Then for any ε > 0 and n, there exists a δ0 > 0 such that for any positive number

δ satisfying δ ≤ δ0 there is a well-defined homomorphism functorial with respect to

relaxation of control:

τε,δ : LF
n (Y, pX , δ) −−−−→ Ln(Y, 1Y , ε)

such that the compositions

LF
n (Y, pX , δ)

τε,δ−−→ Ln(Y, 1Y , ε)
ιε−→ LF

n (Y, pX , ε)

Ln(Y, 1Y , δ)
ιδ−→ LF

n (Y, pX , δ)
τε,δ−−→ Ln(Y, 1Y , ε)

are both relax-control maps. In particular Lpn(Y, 1Y , δ) and Ln(Y, 1Y , ε) are stably

isomorphic.

Proof: Let δ1 = ε/α, where α is the positive number posited in 2.3. By 8.2 and 8.3
of [4], there exists a δ0 > 0 such that the following map is a zero map:

K̃0(Y, 1Y , n, δ0) −−−−→ K̃0(Y, 1Y , n, δ1); [C, p] 7→ [C, p].

Therefore, if δ ≤ δ0, there is a homomorphism

LF
n (Y, pX , δ) −−−−→ LF∪{Y }

n (Y, pX , δ1); [(C, p), ψ] 7→ [(C, p), ψ].

The desired map τε,δ is obtained by composing this with the map

(iY )∗ : LF∪{Y }
n (Y, pX , δ) −−−−→ Ln(Y, 1X , ε)

corresponding to the subspace Y .

Remark. If Y is a compact polyhedron, then there is a constant κYn > 1 which
depends on n and Y such that δ0 above can be taken to be δ1/κYn . For this we need
to change the statement and the proof of 8.1 of [4] like those of 5.4 below.
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Recall that in our Mayer-Vietoris-type stably-exact sequence, each piece of space
tends to get bigger in the process. The following can be used to remedy this in certain
cases. (It is stated here for the identity control map, but there is an obvious extension
to general control maps.)

Proposition 5.2. Let r : X → A be a strong deformation retraction, with a Lips-
chitz continuous strong deformation of Lipschitz constant λ, and i : A → X be the
inclusion map. Then r and i induce “stable” isomorphisms of controlled L-groups in
the following sense: if ε > 0, then for any δ ( 0 < δ ≤ ε/λ) the compositions

Ln(X, 1X , δ)
r∗−→ Ln(A, 1A, ε)

i∗−→ Ln(X, 1X , ε)

Ln(A, 1A, δ)
i∗−→ Ln(X, 1X , δ)

r∗−→ Ln(A, 1A, ε)

are relax-control maps.

Proof: Obvious from 1.2.

Theorem 5.3. Fix a compact polyhedron X and an integer n ≥ 0. Then there exist

numbers ε1 > 0, κ ≥ 1 and λ ≥ 1 (which depend on n, X, and the triangulation)

such that, for any subpolyhedrons A and B of X, any integer k ≥ 0, and any number

0 < ε ≤ ε1, there exists a ladder:

Llf
n(C × R

k, 1, ε) //
i∗

��

Llf
n(A ×R

k, 1, ε)⊕ Llf
n(B ×R

k, 1, ε) //
j∗

��

Llf
n(K ×R

k, 1, ε)

��

Llf
n(C × R

k, 1, λε) //

i∗
Llf
n(A ×R

k, 1, λε)⊕ Llf
n(B ×R

k, 1, λε) //

j∗
Llf
n(K ×R

k, 1, λε)

//
∂

Llf
n(C × R

k+1, 1, κε) //
i∗

��

Llf
n(A× R

k+1, 1, κε)⊕ Llf
n(B × R

k+1, 1, κε)

��

//

∂
Llf
n(C × R

k+1, 1, κλε) //

i∗
Llf
n(A ×R

k+1, 1, κλε)⊕ Llf
n(B × R

k+1, 1, κλε)

which is stably-exact in the sense that

(1) the image of a horizontal map is contained in the kernel of the next map, and

(2) the relax-control image in the second row of the kernel of a map in the first row

is contained in the image of a horizontal map from the left,

where C = A ∩B and K = A ∪B, and the vertical maps are relax-control maps.

Proof: This is obtained from the locally-finite versions of 3.3, 3.4 combined with
4.3, 5.1, and 5.2 (the strong deformations of the neighbourhoods of A and B in K

can be chosen to be PL and hence Lipschitz). Since there are only finitely many
subpolyhedrons of X (with a fixed triangulation), we may choose constants κ and λ
independent of A and B.
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Theorem 5.4. Suppose X is a compact polyhedron and n ≥ 0 is an integer. Then

there exist numbers ε0 > 0 and 0 < µ0 ≤ 1 which depend on X and n such that

Lεn(X, 1X , δ) = Lcn(X; 1X)

for every ε ≤ ε0 and every δ ≤ µ0ε.

Proof: We inductively construct sequences of positive numbers

ε1 ≥ ε2 ≥ ε3 ≥ . . . (> 0)

(1 ≥) µ1 ≥ µ2 ≥ µ3 ≥ . . . (> 0)

such that for any subcomplex K of X with the number of simplices ≤ l,
(1) if 0 < ε ≤ εl, 0 < δ ≤ µlε, and k ≥ 0, then

Llf,ε
n (K × R

k, 1K × 1, δ) = Llf,ε
n (K × R

k, 1K × 1, µlε),

and
(2) if 0 < ε ≤ εl, then the homomorphism

Llf,ε
n (K × R

k; 1K × 1) −−−−→ Llf,εl
n (K ×R

k; 1K × 1)

is injective.
Here R

k is given the maximum metric.
First suppose l = 1 (i.e. K is a single point). Any object with bounded control

on R
k can be squeezed to obtain an arbitrarily small control; therefore,

ε1 = the number posited in 5.2, µ1 = 1

works.
Next assume we have constructed εi and µi for i ≤ l. We claim that

εl+1 = min{µl
λ
,
1
κ
}εl, µl+1 =

µ2
l

λκ

satisfy the required condition. Suppose the number of simplices of K is less than or
equal to l + 1. Choose a simplex of K of the highest dimension, and call the simplex
(viewed as a subpolyhedron) A, and let B = K − intA. Suppose 0 < ε ≤ εl+1 and
0 < δ ≤ µlε. A diagram chase starting from an element of

Llf
n(K ×R

k, 1, µl+1ε)

in the following diagram establishes the property (1). Here the entries in each of the
columns are

Llf
n(A× R

k, 1, γ)⊕ Llf
n(B × R

k, 1, γ) , Llf
n(C ×R

k, 1, γ)

Llf
n(K ×R

k, 1, γ) , and Llf
n(A× R

k+1, 1, γ)⊕ Llf
n(B × R

k+1, 1, γ) ,
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for various γ’s specified in the diagram.

Llf
n(A . . .)⊕ Llf

n(B . . .) Llf
n(K . . .) Llf

n(C . . .) Llf
n(A . . .)⊕ Llf

n(B . . .)

µl
δ
λ

//

��

µl
δ
λ

��

δ
λ

//

��

δ
λ

��

δ

��

// δ //

��

κδ
��

µl+1ε //

��

κµl+1ε

��
µl+1
µl

ε //

��

κ
µl+1
µl

ε // κ
µl+1
µl

ε

λκ
µl+1
µl

ε = µlε //

��

µlε

��

ε // ε

Next suppose 0 < ε ≤ εl+1. A diagram chase starting from an element of

Llf
n(K ×R

k, 1, µl+1ε)

representing an element of

ker{Llf,ε
n (K ×R

k; 1) −−→ Llf,εl
n (K ×R

k; 1)}

establishes (2).

Llf
n(C . . .) Llf

n(A . . .)⊕ Llf
n(B . . .) Llf

n(K . . .) Llf
n(C . . .)

µl+1ε = µ2
l

λκ
ε //

��

µ2
l

λ
ε

��
µl

λκ
ε //

��

µl

λ
ε

��

µlε

��

// µlε

��

// µlε

��

ε //

��

ε
��

// ε
��

εl+1

��

// εl+1 // κεl+1

λεl+1

��

// λεl+1

��

1
µl
λεl+1 // 1

µl
λεl+1
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