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Abstract. Ideas from the theory of topological stability of smooth maps are trans-

ported into the controlled topological category. For example, the controlled topologi-
cal equivalence of maps is discussed. These notions are related to the classification of

manifold approximate fibrations and manifold stratified approximate fibrations. In
turn, these maps form a bundle theory which can be used to describe neighborhoods

of strata in topologically stratified spaces.

1. Introduction

We explore some connections among the theories of topological stability of maps,
controlled topology, and stratified spaces. The notions of topological equivalence
of maps and locally trivial families of maps play an important role in the theory of
topological stability of smooth maps. We formulate the analogues of these notions in
the controlled topological category for two reasons. First, the notion of controlled
topological equivalence of maps is a starting point for formulating a topological
version of Mather’s theory of the topological stability of smooth maps. Recall that
Mather proved that the topologically stable maps are generic for the space of all
smooth maps (with the C∞ topology) between closed smooth manifolds (see Mather
[22], Gibson, Wirthmüller, du Plessis, and Looijenga [9]). The hope is to identify an
analogous generic class for the space of all maps (with the compact-open topology)
between closed topological manifolds. Controlled topology at least gives a place to
begin speculations. Second, the controlled analogue of local triviality for families
of maps is directly related to the classification of approximate fibrations between
manifolds due to Hughes, Taylor and Williams [17], [18]. We elucidate that relation
in §8.

Another important topic in the theory of topological stability of smooth maps is
that of smoothly stratified spaces (cf. Mather [21]). Quinn [26] initiated the study
of topologically stratified spaces and Hughes [12], [13] has shown that ‘manifold
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stratified approximate fibrations’ form the correct bundle theory for those spaces.
The classification of manifold approximate fibrations via controlled topology men-
tioned above extends to manifold stratified approximate fibrations; hence, we have
another connection between controlled topology and stratified spaces. This classi-
fication of manifold stratified approximate fibrations is the main new result of this
paper.

Two essential tools in stability theory are Thom’s two isotopy lemmas [21]. In
§9 we formulate an analogue of the first of these lemmas for topologically stratified
spaces. A non-proper version is also stated.

It should be noted that in his address to the International Congress in 1986,
Quinn predicted that controlled topology would have applications to the topolog-
ical stability of smooth maps [25]. In particular, controlled topology should be
applicable to the problem of characterizing the topologically stable maps among
all smooth maps. More recently, Cappell and Shaneson [1] suggested that topo-
logically stratified spaces should play a role in the study of the local and global
topological type of topologically smooth maps (the connection is via the mapping
cylinder of the smooth map). While the speculations in this paper are related to
these suggestions, they differ in that it is suggested here that controlled topology
might be used to study a generic class of topological, rather than smooth, maps.

2. Topological equivalence and locally trivial families of maps

We recall some definitions from the theory of topological stability of smooth
maps (see Damon [3], du Plessis and Wall [5], Gibson, Wirthmüller, du Plessis, and
Looijenga [9], Mather [21], [22]).

Definition 2.1. Two maps p0 : X0 → Y0, p1 : X1 → Y1 are topologically equivalent
if there exist homeomorphisms h : X0 → X1 and g : Y0 → Y1 such that p1h = gp0,
so that there is a commuting diagram:

X0
h−−−−→ X1

p0

y yp1

Y0
g−−−−→ Y1.

Definition 2.2. A smooth map p0 : M → N between smooth manifolds is topo-
logically stable if there exists a neighborhood V of p0 in the space of all smooth
maps C∞(M, N ) such that for all p1 ∈ V , p0 is topologically equivalent to p1.

The space C∞(M, N ) is given the Whitney C∞ topology. Thom conjectured
and Mather proved that the topologically stable maps are generic in C∞(M, N ); in
fact, they form an open dense subset (see [9], [21], [22]). The proof yields a stronger
result, namely that the strongly topologically stable maps are dense (see [9]).

Definition 2.3. A smooth map p0 : M → N between smooth manifolds is strongly
topologically stable if there exists a neighborhood V of p0 in C∞(M, N ) such that
for all p1 ∈ V , there exists a (topologically) trivial smooth one-parameter family
p : M × I → N joining p0 to p1. This means there exist continuous families



CONTROLLED TOPOLOGICAL EQUIVALENCE 33

{ht : M →M | 0 ≤ t ≤ 1} and {gt : N → N | 0 ≤ t ≤ 1} of homeomorphisms such
that p0 = g−1

t ◦ pt ◦ ht for all t ∈ I, so that there is a commuting diagram:

M
ht−−−−→ M

p0

y pt

y
N

gt−−−−→ N.

The notion of triviality for the one-parameter family of maps in the definition
above can be generalized to arbitrary families of maps. We now recall that definition
and the related notion of local triviality (cf. [21]).

Definition 2.4. Consider a commuting diagram of spaces and maps:

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

(1) f is trivial over B if there exist spaces F1 and F2, a map q : F1 → F2 and
homeomorphisms h : E1 → F1×B, g : E2 → F2×B such that the following
diagram commutes:

B
p1←−−−− E1

f−−−−→ E2
p2−−−−→ B

idB

y h

y g

y yidB

B
proj←−−−− F1 × B

q×idB−−−−→ F2 ×B
proj−−−−→ B

(2) f is locally trivial over B if for every x ∈ B there exists an open neighbor-
hood U of x in B such that f | : p−1

1 (U )→ p−1
2 (U ) is trivial over U .

(3) In either case, q : F1 → F2 is the model of the family f .

Remarks 2.5.
(1) The model q : F1 → F2 is well-defined up to topological equivalence.
(2) Both p1 : E1 → B and p2 : E2 → B are fibre bundle projections with fibre

F1 and F2, respectively.
(3) For every x ∈ B, fx = f | : p−1

1 (x) → p−1
2 (x) is topologically equivalent to

q : F1 → F2.
(4) One step in Mather’s proof that the topologically stable smooth maps form

an open dense subset is to show that certain families of maps are locally
trivial. Thom’s second isotopy lemma is used for this.

A fibre preserving map is a map which preserves the fibres of maps to a given
space, usually a k-simplex or an arbitrary space B. Specifically, if ρ : X → B and
σ : Y → B are maps, then a map f : X → Y is fibre preserving over B if σf = ρ.

There is a notion of equivalence for families of maps over B.
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Definition 2.6.
(1) Two locally trivial families of maps over B

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

and

E′
1

f ′
−−−−→ E′

2

p′
1

y yp′
2

B
idB−−−−→ B

are topologically equivalent provided there exist homeomorphisms

h1 : E1 → E′
1 and h2 : E2 → E′

2

which are fibre preserving over B and f′h1 = h2f ; that is, the following
diagram commutes:

B
p1←−−−− E1

f−−−−→ E2
p2−−−−→ B

idB

y h1

y h2

y yidB

B
p′
1←−−−− E′

1
f ′

−−−−→ E′
2

p′
2−−−−→ B

(2) Let A1(q, B) denote the set of topological equivalence classes of locally
trivial families of maps over B with model q : F1 → F2.

The set A1(q, B) can be interpreted as a set of equivalence classes of certain
fibre bundles over B as follows. Let TOP(q) be the topological group given by the
pull-back diagram

TOP(q) −−−−→ TOP(F2)y yq]

TOP(F1)
q]−−−−→ Map(F1, F2)

where q](h) = q ◦ h and q](g) = g ◦ q. That is,

TOP(q) = {(h, g) ∈ TOP(F1) ×TOP(F2) | qh = gq}.
Note that TOP(q) is naturally a subgroup of TOP(F1qF2) via (h, g) 7→ hq g. Let
A2(q, B) denote the set of bundle equivalence classes of fibre bundles over B with
fibre F1 q F2 and structure group TOP(q).

Proposition 2.7. There is a bijection α : A1(q, B) → A2(q, B). In particular, if
B is a separable metric space, then there is a bijection A1(q, B)→ [B, BTOP(q)].

The function α is defined by sending a locally trivial family

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

to the fibre bundle p1q p2 : E1 qE2 → B whose total space is the disjoint union of
E1 and E2. The fact that α is a bijection is fairly straightforward to prove. At any
rate, it follows from a more general result in §5 (see Theorem 5.5 and the comments
following it).
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3. Controlled topological equivalence

We propose a definition of topological equivalence in the setting of controlled
topology and use it to make some speculations about generic maps between topo-
logical manifolds.

The mapping cylinder of a map p : X → Y is the space

cyl(p) = (X × I q Y )/{(x, 1) ∼ p(x) | x ∈ X}.

There is a natural map π : cyl(p)→ I defined by

{
π([x, t]) = t, if (x, t) ∈ X × I

π([y]) = 1, if y ∈ Y .

For clarification the map π will sometimes be denoted πp : cyl(p)→ I. If p : X → Y
and p′ : X ′ → Y ′ are maps and πp : cyl(p) → I and πp′ : cyl(p′) → I are the
natural maps, then a homeomorphism h : cyl(p) → cyl(p ′) is level if πp = πp′h.
Let TOPlevel(p) denote the simplicial group of level homeomorphisms from cyl(p)
onto itself. That is, a k–simplex of TOP level(p) consists of a ∆k–parameter family
of level homeomorphisms h : cyl(p) × ∆k → cyl(p) × ∆k. The group TOP(p) as
defined in the previous section has a simplicial version (the singular complex of
the topological group) and, as such, is a simplicial subgroup of TOP level(p). For
example, a pair of homeomorphisms (h : X → X, g : Y → Y ) such that ph = gp
induces a level homeomorphism

cyl(p)→ cyl(p),
{

[x, t] 7→ [h(x), t], if x ∈ X

[y] 7→ [g(y)], if y ∈ Y

Definition 3.1. Two maps p0 : X0 → Y0, p1 : X1 → Y1 are controlled topologically
equivalent if there exists a level homeomorphism h : cyl(p0)→ cyl(p1).

Note that a level homeomorphism h : cyl(p0)→ cyl(p1) induces (by restriction)
a one-parameter family ht : X0 → X1, 0 ≤ t < 1, of homeomorphisms and a
homeomorphism g : Y0 → Y1. If all the spaces involved are compact metric, then

gp0 = lim
t→1

p1ht

and such data is equivalent to having a level homeomorphism (cf. [16], [17], [19],
[20]). This formulation should be compared with the formulation of topological
equivalence in Definition 2.1.

Definition 3.2. Two maps p0 : X0 → Y0, p1 : X1 → Y1 between compact metric
spaces are weakly controlled topologically equivalent if there exist continuous families
{ht : X0 → X1 | 0 ≤ t < 1} and {gt : Y0 → Y1 | 0 ≤ t < 1} of homeomorphisms
such that p0 = limt→1 g−1

t ◦ p1 ◦ ht.

The limit above is taken in the sup metric which is the metric for the compact-
open topology. The space C(X, Y ) of maps from X to Y is given the compact-open
topology.
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Definition 3.3. A map p0 : X → Y between compact metric spaces is weakly
controlled topologically stable if there exists a neighborhood V of p0 in C(X, Y )
such that for all p1 ∈ V and ε > 0, there exists a map p′1 : X → Y such that p0 is
weakly controlled topologically equivalent to p ′

1 and p′1 is ε–close to p1.

Many of the results in the theory of singularities have a mixture of smooth and
topological hypotheses and conclusions. This is the case in Mather’s theorem on
the genericness of topologically stable maps among smooth maps. One direction
that controlled topology is likely to take is in finding the topological underpinnings
in this area. The following speculation is meant to be a step towards formulating
what might be true.

Speculation 3.4. If M and N are closed topological manifolds, then the weakly
controlled topologically stable maps from M to N are generic in C(M, N ).

This might be established by showing that the stratified systems of approximate
fibrations are dense and also weakly controlled topologically stable (see Hughes [14]
and Quinn [27] for stratified systems of approximate fibrations). As evidence for this
line of reasoning, note that Chapman’s work [2] shows that manifold approximate
fibrations are weakly controlled topologically stable.

Another line of speculation concerns polynomial maps between euclidean spaces.
It is known that the classification of polynomial maps up to smooth equivalence
differs from their classification up to topological equivalence (cf. Thom [32], Fakuda
[8], Nakai [23]). What can be said about the classification of polynomial maps up
to controlled topological equivalence?

4. Controlled locally trivial families of maps

Analogues in controlled topology of locally trivial families of maps are defined.
In fact, we define a moduli space of all such families.

Definition 4.1. Consider a commuting diagram of spaces and maps:

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

(1) f is controlled trivial over B if there exist spaces F1 and F2, a map q : F1 →
F2 and a homeomorphism H : cyl(f) → cyl(q) × B such that the following
diagram commutes:

B
c←−−−− cyl(f)

πf−−−−→ I

idB

y H

y yidI

B
proj←−−−− cyl(q)× B

π′
q−−−−→ I

where c : cyl(f) → B is given by{
c([x, t]) = p1(x) = p2f(x), if (x, t) ∈ E1 × I

c([y]) = p2(y), if y ∈ E2
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and π′
q is the composition cyl(q)× B

proj−−→ cyl(q)
πq−→ I.

(2) f is controlled locally trivial over B if for every x ∈ B there exists an open
neighborhood U of x in B such that f | : p−1

1 (U ) → p−1
2 (U ) is controlled

trivial over U .
(3) In either case, q : F1 → F2 is the model of the family f .

Remarks 4.2.
(1) The model q : F1 → F2 is well-defined up to controlled topological equiva-

lence.
(2) Both p1 : E1 → B and p2 : E2 → B are fibre bundle projections with fibre

F1 and F2, respectively.
(3) For every x ∈ B, fx = f | : p−1

1 (x) → p−1
2 (x) is controlled topologically

equivalent to q : F1 → F2.

There is a notion of controlled equivalence for families of maps over B.

Definition 4.3.

(1) Two controlled locally trivial families of maps over B

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

and

E′
1

f ′
−−−−→ E′

2

p′
1

y yp′
2

B
idB−−−−→ B

are controlled topologically equivalent provided there exists a level homeo-
morphism

H : cyl(f) → cyl(f ′)

which is fibre preserving over B in the sense that the following diagram
commutes:

cyl(f) H−−−−→ cyl(f ′)

c

y yc′

B
idB−−−−→ B

where c is given by

{
c([x, t]) = p2f(x) = p1(x), if (x, t) ∈ E1 × I

c([y]) = p2(y), if y ∈ E2

and c′ is given by

{
c′([x, t]) = p′

2f
′(x) = p′1(x), if (x, t) ∈ E ′

1 × I

c′([y]) = p′2(y), if y ∈ E ′
2.

(2) Let B1(q, B) denote the set of controlled topological equivalence classes of
locally trivial families of maps over B with model q : F 1 → F2.
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In the next section we will show that the set B1(q, B) can be interpreted as a set
of equivalence classes of certain fibre bundles over B in analogy with Proposition
2.7 (see Theorem 5.5). But first we will define the moduli space of all controlled
locally trivial families of maps over B with model q : F 1 → F2. This is done in the
setting of simplicial sets as follows.

Define a simplicial set B1(q, B) so that a typical k–simplex of B1(q, B) consists
of a commuting diagram

E1
f−−−−→ E2

p1

y yp2

B ×∆k
idB×∆k−−−−−→ B ×∆k

which is a controlled locally trivial family of maps over B × ∆k with model q :
F1 → F2. Thus, a vertex of B1(q, B) is a controlled locally trivial family of maps
over B with model q : F1 → F2. (As in [17], [18] we also need to require that these
spaces are reasonably embedded in an ambient universe, but we will ignore that
technicality in this paper.) Face and degeneracy operations are induced from those
on the standard simplexes. As in [18], this simplicial set satisfies the Kan condition.

Definition 4.4. The mapping cylinder construction µ takes a controlled locally
trivial family of maps

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

to the mapping cylinder cyl(f) together with the natural map µ(f) : cyl(f) → B.

Note that the controlled locally trivial condition on f means that µ(f) : cyl(f) →
B is a fibre bundle with fibre cyl(q) and structure group TOPlevel(q) where q is the
model of f . If

E′
1

f ′
−−−−→ E′

2

p′
1

y yp′
2

B
idB−−−−→ B

is another controlled locally trivial family of maps over B with model q, then to
have a controlled topological equivalence H : cyl(f) → cyl(f ′) as in Definition 4.3
means precisely to have a bundle isomorphism from µ(f) to µ(f ′).

Proposition 4.5. There is a bijection π0B1(q, B) ≈ B1(q, B).

Proof. In order to see that the natural function π0B1(q, B) → B1(q, B) is well-
defined, suppose

E1
f−−−−→ E2

p1

y yp2

B ×∆1
idB×∆1−−−−−→ B ×∆1
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is a locally trivial family of maps with model q : F 1 → F2. Then by the remarks
above µ(f) : cyl(f) → B×∆1 is a fibre bundle with fibre cyl(q) and structure group
TOPlevel(q). Thus, there is a bundle isomorphism from the restriction of µ(f) over
B×{0} to the restriction of µ(f) over B×{1}, and the remarks above further show
that this isomorphism gives a controlled topological equivalence from

p−1
1 (B × {0}) f |−−−−→ p−1

2 (B × {0})
p1|

y yp2|

B × {0} idB−−−−→ B × {0}

to

p−1
1 (B × {1}) f |−−−−→ p−1

2 (B × {1})
p1|

y yp2|

B × {1} idB−−−−→ B × {1}
showing that the function is well-defined. The function is obviously surjective, so
it remains to see that it is injective. To this end suppose that

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B

and

E′
1

f ′
−−−−→ E′

2

p′
1

y yp′
2

B
idB−−−−→ B

are controlled topologically equivalent with a level homeomorphism H : cyl(f) →
cyl(f ′) as in Definition 4.3. Let h0 : E1 → E′

1 and h1 : E2 → E′
2 be the restrictions

of H to the top and bottom of the mapping cylinders, respectively. Then there is
an induced commutative diagram

cyl(h0) −−−−→ cyl(h1)y y
B ×∆1 −−−−→ B ×∆1

which is a 1–simplex in B1(q, B) from f to f ′. �

5. Bundles with mapping cylinder fibres

In this section we show that controlled locally trivial families of maps over B
can be interpreted as fibre bundles over B with fibre the mapping cylinder of the
model. Reduced structure groups are discussed as well as a relative situation in
which the target bundle over B is fixed.

Let B be a fixed separable metric space. Let B2(q, B) denote the set of bundle
equivalence classes of fibre bundles over B with fibre cyl(q) and structure group
TOPlevel(q). Define B2(q, B) to be the simplicial set whose k–simplices are fibre
bundles over B × ∆k with fibre cyl(q) and structure group TOPlevel(q). The fol-
lowing result is well-known (cf. [17]).

Proposition 5.1. There are bijections

π0B2(q, B) ≈ B2(q, B) ≈ [B, BTOPlevel(q)].

The mapping cylinder construction of Definition 4.4 has the following simplicial
version.
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Definition 5.2. The mapping cylinder construction is the simplicial map

µ : B1(q, B)→ B2(q, B)

defined by sending a diagram

E1
f−−−−→ E2

p1

y yp2

B ×∆k
idB×∆k−−−−−→ B ×∆k

to cyl(f) → B × ∆k. Note that the local triviality condition on f implies that
cyl(f)→ B ×∆k is a fibre bundle projection with fibre cyl(q) and structure group
TOPlevel(q).

The first part of the following result is proved in [18]. The second part follows
from the first part together with Propositions 4.5 and 5.1.

Theorem 5.3. The mapping cylinder construction defines a homotopy equivalence
µ : B1(q, B)→ B2(q, B). In particular, B1(q, B) ≈ B2(q, B) ≈ [B, BTOPlevel(q)].

Reduced structure groups. Let G be a simplicial subgroup of TOP level(q). We
will now generalize the discussion above to the situation where the structure group
is reduced to G.

Definition 5.4. Consider a controlled locally trivial family

E1
f1−−−−→ E2

p1

y yp2

B
idB−−−−→ B

with model q : F1 → F2. Then f is G–locally trivial over B provided there exists
an open cover U of B such that f is controlled trivial over U for each U ∈ U via a
trivializing homeomorphism

HU : cyl(f | : p−1
1 (U )→ p−1

2 (U ))→ cyl(q) ×B.

These trivializing homeomorphisms are required to have the property that if U, V ∈
U and x ∈ U ∩ V , then

HV ◦H−1
U | : cyl(q) × {x} → cyl(q)× {x}

is an element of G.

Let B1(q, B, G) be the simplicial set whose k–simplices are the G–locally trivial
families of maps over B ×∆k with model q : F1 → F2. For example,

B1(q, B, TOPlevel(q)) = B1(q, B).
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Definition 4.3 can be extended in the obvious way to define what it means for
two G–locally trivial families to be G–controlled topologically equivalent (the home-
omorphism H is required to be a family of homeomorphisms in the group G) and
B1(q, B, G) denotes the set of equivalence classes. In analogy with Proposition 4.5
there is a bijection

π0B1(q, B, G) ≈ B1(q, B, G).

Likewise B2(q, B, G) denotes the set of bundle equivalence classes of fibre bundles
over B with fibre cyl(q) and structure group G, and B2(q, B, G) is the simplicial
set whose k–simplices are fibre bundles over B×∆k with fibre cyl(q) and structure
group G. In analogy with Proposition 5.1 there are bijections

π0B2(q, B, G) ≈ B2(q, B, G) ≈ [B, BG].

Moreover, the proof of Theorem 5.3 can be seen to give a proof of the following
result (cf. [18, §2]).

Theorem 5.5. The mapping cylinder construction defines a homotopy equivalence
µ : B1(q, B, G)→ B2(q, B, G). In particular, B1(q, B, G) ≈ B2(q, B, G) ≈ [B, BG].

As an example, consider the group TOP(q) of §2. It was pointed out at the
beginning of §3 that TOP(q) is naturally a subgroup of TOPlevel(q). Note that
B1(q, B, TOP(q)) = A1(q, B) and B2(q, B, TOP(q)) = A2(q, B), so that Proposition
2.7 follows directly from Theorem 5.5.

Fixed target bundle. There are also relative versions of the preceding results in
which the bundle p2 : E2 → B is fixed. For example, B1(q rel p2 : E2 → B) is the
set of controlled locally trivial families of maps of the form

E1
f−−−−→ E2

p1

y yp2

B
idB−−−−→ B.

Two such families f : E1 → E2 and f ′ : E′
1 → E2 are controlled topologically

equivalent rel p2 if the homeomorphism H : cyl(f) → cyl(f ′) of Definition 4.3 is
required to be the identity on E2. There are analogous definitions of the following:

(1) B1(q rel p2 : E2 → B),
(2) B2(q rel p2 : E2 → B),
(3) B2(q rel p2 : E2 → B).

Definition 5.6. The group of controlled homeomorphisms of q is the subgroup
TOPc(q) of TOPlevel(q) consisting of all level homeomorphisms h : cyl(q) ×∆k →
cyl(q)×∆k such that h|F2 ×∆k = idF2×∆k .

Note that TOPc(q) is the kernel of the restriction homomorphism

TOPlevel(q)→ TOP(F2).



42 BRUCE HUGHES

Let p̂2 : B → BTOP(F2) be the classifying map for the bundle p2. Thus,
B2(q rel p2 : E2 → B) is in one-to-one correspondence with the set of vertical
homotopy classes of lifts of p̂2 : B → BTOP(F2) to BTOPlevel(q)→ BTOP(F2):

BTOPlevel(q)y
B

cp2−−−−→ BTOP(F2).

The following result follows from the proofs of the preceding results.

Proposition 5.7.

(1) π0B1(q rel p2 : E2 → B) ≈ B1(q rel p2 : E2 → B),
(2) π0B2(q rel p2 : E2 → B) ≈ B2(q rel p2 : E2 → B),
(3) the mapping cylinder construction defines a homotopy equivalence

µ : B1(q rel p2 : E2 → B)→ B2(q rel p2 : E2 → B).

Reduced structure group and fixed target bundle. There are versions of
these relative results when the structure groups are reduced to G as before. The
sets and simplicial sets involved are denoted as follows:

(1) B1(q, G rel p2 : E2 → B),
(2) B1(q, G rel p2 : E2 → B),
(3) B2(q, G rel p2 : E2 → B),
(4) B2(q, G rel p2 : E2 → B).

The following result records the analogous bijections and homotopy equivalences.

Proposition 5.8.

(1) π0B1(q, G rel p2 : E2 → B) ≈ B1(q, G rel p2 : E2 → B),
(2) π0B2(q, G rel p2 : E2 → B) ≈ B2(q, G rel p2 : E2 → B),
(3) the mapping cylinder construction defines a homotopy equivalence

µ : B1(q, G rel p2 : E2 → B)→ B2(q, G rel p2 : E2 → B).

6. Manifold stratified spaces

There are many naturally occurring spaces which are not manifolds but which
are composed of manifold pieces, those pieces being called the strata of the space.
Examples include polyhedra, algebraic varieties, orbit spaces of many group actions
on manifolds, and mapping cylinders of maps between manifolds. Quinn [26] has
introduced a class of stratified spaces called by him ‘manifold homotopically strat-
ified sets’ with the objective ‘to give a setting for the study of purely topological
stratified phenomena’ as opposed to the smooth and piecewise linear phenomena
previously studied.
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Roughly, the stratified spaces of Quinn are spaces X together with a finite fil-
tration by closed subsets

X = Xm ⊇ Xm−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅,
such that the strata Xi = Xi \Xi−1 are manifolds with neighborhoods in Xi ∪Xk

(for k > i) which have the local homotopy properties of mapping cylinders of
fibrations. These spaces include the smoothly stratified spaces of Whitney [35],
Thom [31] and Mather [21] (for historical remarks on smoothly stratified spaces see
Goresky and MacPherson [10]) as well as the locally conelike stratified spaces of
Siebenmann [29] and, hence, orbit spaces of finite groups acting locally linearly on
manifolds.

Cappell and Shaneson [1] have shown that mapping cylinders of ‘smoothly strat-
ified maps’ between smoothly stratified spaces are in this class of topologically
stratified spaces even though it is known that such mapping cylinders need not be
smoothly stratified (see [1] and [32]). Hence, the stratified spaces of Quinn arise
naturally in the category of smoothly stratified spaces. For a comprehensive survey
of the classification and applications of stratified spaces, see Weinberger [34].

Smoothly stratified spaces have the property that strata have neighborhoods
which are mapping cylinders of fibre bundles, a fact which is often used in arguments
involving induction on the number of strata. Such neighborhoods fail to exist in
general for Siebenmann’s locally conelike stratified spaces. For example, it is known
that a (topologically) locally flat submanifold of a topological manifold (which is
an example of a locally conelike stratified space with two strata) may fail to have
a tubular neighborhood (see Rourke and Sanderson [28]). However, Edwards [6]
proved that such submanifolds do have neighborhoods which are mapping cylinders
of manifold approximate fibrations (see also [18]). On the other hand, examples
of Quinn [24] and Steinberger and West [30] show that strata in orbit spaces of
finite groups acting locally linearly on manifolds may fail to have mapping cylinder
neighborhoods. In Quinn’s general setting, mapping cylinder neighborhoods may
fail to exist even locally.

The main result announced in [12] (and restated here in §8) gives an effective
substitute for neighborhoods which are mapping cylinders of bundles. Instead of
fibre bundles, we use ‘manifold stratified approximate fibrations,’ and instead of
mapping cylinders, we use ‘teardrops’. This result should be thought of as a tubular
neighborhood theorem for strata in manifold stratified spaces.

We now recall the concepts needed to precisely define the manifold stratified
spaces of interest (see [26], [12], [15], [16]). A subset Y ⊆ X is forward tame in X
if there exist a neighborhood U of Y in X and a homotopy h : U × I → X such
that h0 = inclusion : U → X, ht|Y = inclusion : Y → X for each t ∈ I, h1(U ) = Y ,
and h((U \ Y ) × [0, 1)) ⊆ X \ Y.

Define the homotopy link of Y in X by

holink(X, Y ) = {ω ∈ XI | ω(t) ∈ Y iff t = 0}.
Evaluation at 0 defines a map q : holink(X, Y )→ Y called holink evaluation.

Let X = Xm ⊇ Xm−1 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅ be a space with a finite filtration
by closed subsets. Then Xi is the i-skeleton and the difference Xi = Xi \Xi−1 is
called the i-stratum.
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A subset A of a filtered space X is called a pure subset if A is closed and a union
of components of strata of X. For example, the skeleta are pure subsets.

The stratified homotopy link of Y in X, denoted holinks(X, Y ) consists of all
ω in holink(X, Y ) such that ω((0, 1]) lies in a single stratum of X. The stratified
homotopy link has a natural filtration with i–skeleton

holinks(X, Y )i = {ω ∈ holinks(X, Y ) | ω(1) ∈ Xi}.
The holink evaluation (at 0) restricts to a map q : holinks(X, Y )→ Y .

If X is a filtered space, then a map f : Z × A→ X is stratum preserving along
A if for each z ∈ Z, f({z} × A) lies in a single stratum of X. In particular, a map
f : Z × I → X is a stratum preserving homotopy if f is stratum preserving along I.

Definition 6.1. A filtered space X is a manifold stratified space if the following
four conditions are satisfied:

(1) Manifold strata. X is a locally compact, separable metric space and each
stratum Xi is a topological manifold (without boundary).

(2) Forward tameness. For each k > i, the stratum Xi is forward tame in
Xi ∪Xk.

(3) Normal fibrations. For each k > i, the holink evaluation q : holink(X i ∪
Xk, Xi)→ Xi is a fibration.

(4) Finite domination. For each i there exists a closed subset K of the
stratified homotopy link holinks(X, Xi) such that the holink evaluation map
K → Xi is proper, together with a stratum preserving homotopy

h : holinks(X, Xi)× I → holinks(X, Xi)

which is also fibre preserving over Xi (i.e., qht = q for each t ∈ I) such that
h0 = id and h1(holinks(X, Xi)) ⊆ K.

7. Manifold stratified approximate fibrations

The definition of an approximate fibration (as given in [17]) was generalized in
[12] to the stratified setting. Let X = Xm ⊇ · · · ⊇ X0 and Y = Y n ⊇ · · · ⊇ Y 0

be filtered spaces and let p : X → Y be a map (p is not assumed to be stratum
preserving). Then p is said to be a stratified approximate fibration provided given
any space Z and any commuting diagram

Z
f−−−−→ X

×0

y yp

Z × I
F−−−−→ Y

where F is a stratum preserving homotopy, there exists a stratified controlled so-
lution; i.e., a map F̃ : Z × I × [0, 1) → X which is stratum preserving along
I × [0, 1) such that F̃ (z, 0, t) = f(z) for each (z, t) ∈ Z × [0, 1) and the function
F̄ : Z×I×[0, 1]→ Y defined by F̄ |Z×I×[0, 1) = pF̃ and F̄ |Z×I×{1} = F×id{1}
is continuous.

A stratified approximate fibration between manifold stratified spaces is a mani-
fold stratified approximate fibration if, in addition, it is a proper map (i.e., inverse
images of compact sets are compact).
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8. Teardrop neighborhoods

Given spaces X, Y and a map p : X → Y ×R, the teardrop of p (see [16]) is the
space denoted by X ∪p Y whose underlying set is the disjoint union X q Y with
the minimal topology such that

(1) X ⊆ X ∪p Y is an open embedding, and
(2) the function c : X ∪p Y → Y × (−∞, +∞] defined by

c(x) =
{

p(x), if x ∈ X

(x, +∞), if x ∈ Y .

is continuous.
The map c is called the tubular map of the teardrop or the teardrop collapse. The
tubular map terminology comes from the smoothly stratified case (see [4], [21],
[33]). This is a generalization of the construction of the open mapping cylinder of

a map g : X → Y . Namely,
◦

cyl(g) is the teardrop (X ×R) ∪g×id Y .

Theorem 8.1. If X and Y are manifold stratified spaces and p : X → Y ×R is a
manifold stratified approximate fibration, then X ∪p Y is a manifold stratified space
with Y a pure subset.

In this statement, Y ×R and X ∪p Y are given the natural stratifications.
The next result from [12] is a kind of converse to this proposition. First, some

more definitions. A subset Y of a space X has a teardrop neighborhood if there exist
a neighborhood U of Y in X and a map p : U \ Y → Y × R such that the natural
function (U \ Y ) ∪p Y → U is a homeomorphism. In this case, U is the teardrop
neighborhood and p is the restriction of the tubular map.

Theorem 8.2 (Teardrop Neighborhood Existence). Let X be a manifold
stratified space such that all components of strata have dimension greater than 4,
and let Y be a pure subset. Then Y has a teardrop neighborhood whose tubular map

c : U → Y × (−∞, +∞]

is a manifold stratified approximate fibration.

A complete proof of this result will be given in [13], but special cases are in [15]
and [16].

The next result from [12] concerns the classification of neighborhoods of pure
subsets of a manifold stratified space. Given a manifold stratified space Y , a strat-
ified neighborhood of Y consists of a manifold stratified space containing Y as a
pure subset. Two stratified neighborhoods X, X′ of Y are equivalent if there exist
neighborhoods U, U ′ of Y in X, X ′, respectively, and a stratum preserving home-
omorphism h : U → U ′ such that h|Y = id. A neighborhood germ of Y is an
equivalence class of stratified neighborhoods of Y .

Theorem 8.3 (Neighborhood Germ Classification). Let Y be a manifold
stratified space such that all components of strata have dimension greater than
4. Then the teardrop construction induces a one-to-one correspondence from con-
trolled, stratum preserving homeomorphism classes of manifold stratified approxi-
mate fibrations over Y × R to neighborhood germs of Y .
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9. Applications of Teardrop Neighborhoods

Teardrop neighborhoods can also be used in conjunction with the geometric
theory of manifold approximate fibrations [11] to study the geometric topology of
manifold stratified pairs. Examples of results proved using teardrop technology are
stated in this section. Details will appear in [13].

Theorem 9.1 (Parametrized Isotopy Extension). Let X be a manifold strati-
fied space such that all components of strata have dimension greater than 4, let Y be
a pure subset of X, let U be a neighborhood of Y in X, and let h : Y ×∆k → Y ×∆k

be a k-parameter stratum preserving isotopy. Then there exists a k-parameter iso-
topy h̃ : X ×∆k → X ×∆k extending h and supported on U ×∆k.

This generalizes results of Edwards and Kirby [7], Siebenmann [29] and Quinn
[26].

The next result is a topological analogue of Thom’s First Isotopy Theorem [31]
and can be viewed as a first step towards a topological theory of topological stability.

Theorem 9.2 (First Topological Isotopy). Let X be a manifold stratified space
and let p : X → R

n be a map such that
(i) p is proper,
(ii) for each stratum Xi of X, p| : Xi → R

n is a topological submersion,
(iii) for each t ∈ R

n, the filtration of X restricts to a filtration of p−1(t) giving
p−1(t) the structure of a manifold stratified space such that all components
of strata have dimension greater than 4.

Then p is a bundle and can be trivialized by a stratum preserving homeomorphism;
that is, there exists a stratum preserving homeomorphism h : p−1(0) × R

n → X
such that ph is projection.

Here is a non-proper version of the preceding result.

Theorem 9.3 (Non-proper First Topological Isotopy). Let X be a manifold
stratified space and let p : X → R

n be a map such that
(i) if ρ : X → [0,∞) is a proper map and p′ = ρ× p : X → R

n× [0,∞), then
the teardrop X ∪p′ R

n is a manifold stratified space,
(ii) for each stratum Xi of X, p| : Xi → R

n is a topological submersion,
(iii) for each t ∈ R

n, the filtration of X restricts to a filtration of p−1(t) giving
p−1(t) the structure of a manifold stratified space such that all components
of strata have dimension greater than 4.

Then p is a bundle and can be trivialized by a stratum preserving homeomorphism;
that is, there exists a stratum preserving homeomorphism h : p−1(0) × R

n → X
such that ph is projection.

10. Classifying manifold stratified approximate fibrations

Some applications of teardrop neighborhoods are combined with the material in
§5 on bundles with mapping cylinder fibres in order to present a classification of
manifold stratified approximate fibrations, at least when the range is a manifold,
generalizing the classification of manifold approximate fibrations in [17] and [18].
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For notation, let B be a connected i-manifold without boundary and let q : V →
R

i be a manifold stratified approximate fibration where all components of strata
of V have dimension greater than 4. A stratified manifold approximate fibration
p : X → B has fibre germ q if there exists an embedding R

i ⊆ B such that p| :
p−1(Ri) → R

i is controlled, stratum preserving homeomorphic to q; that is, there
exists a stratum preserving, level homeomorphism cyl(q)→ cyl(p| : p−1(Ri)→ R

i)
where the mapping cylinders have the natural stratifications.

The following result shows that fibre germs are essentially unique. For nota-
tion, let r : R

i → R
i be the orientation reversing homeomorphism defined by

r(x1, x2, . . . , xi) = (−x1, x2, . . . , xi).

Theorem 10.1. Let p : X → B be a manifold stratified approximate fibration such
that all components of strata have dimension greater than 4. Let gk : R

i → B, k =
1, 2, be two open embeddings. Then p| : p−1(g0(Ri))→ g0(Ri) is controlled, stratum
preserving homeomorphic to either p| : p−1(g1(Ri))→ g1(Ri) or p| : p−1(g1(Ri))→
rg1(Ri).

Proof. The proof follows that of the corresponding result for manifold approxi-
mate fibrations in [17, Cor. 14.6]. The stratified analogues of the straightening
phenomena are consequences of the teardrop neighborhood results [12], [13]. The
use of Siebenmann’s Technical Bundle Theorem is replaced with the non-proper
topological version of Thom’s First Isotopy Lemma in §9. �

There is a moduli space MSAF(B)q of all manifold stratified approximate fi-
brations over B with fibre germ q. It is defined as a simplicial set with a typ-
ical k–simplex given by a map p : X → B × ∆k such that for each t ∈ ∆k,
p| : p−1(t)→ B ×{t} is a manifold stratified approximate fibration with fibre germ
q and there exists a stratum preserving homeomorphism p−1(0)×∆k → X which is
fibre preserving over ∆k. (There is also a technical condition giving an embedding
in an ambient universe; cf. [17]).

The proof of the next proposition follows that of the corresponding result for
manifold approximate fibrations in [17]. The necessary stratified versions of the
manifold approximate fibration tools are in [12] and [13] and follow from teardrop
technology.

Proposition 10.2. π0 MSAF(B)q is in one-to-one correspondence with the set of
controlled, stratum preserving homeomorphism classes of stratified manifold approx-
imate fibrations over B with fibre germ q.

Let TOPlevel
s (q) denote the simplicial group of self homeomorphisms of the map-

ping cylinder cyl(p) which preserve the mapping cylinder levels and are stratum
preserving with respect to the induced stratification of cyl(q). Note that there is a
restriction homomorphism TOPlevel

s (q)→ TOPi.
Let τB → B denote the topological tangent bundle of B. Consider τB as an

open neighborhood of the diagonal in B × B so that τB → B is first coordinate
projection. As in §5 we can form the simplicial set B1(q, TOPlevel

s (q) rel τB → B)
which we denote simply by B1(q, TOPlevel

s (q) rel τB).
The differential

d : MSAF(B)q → B1(q, TOPlevel
s (q) rel τB)
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is a simplicial map whose definition is illustrated on vertices as follows (for higher
dimensional simplices, the construction is analogous; cf. [17]). If p : X → B is a
vertex of MSAF(B)q , then form

idB ×p : B ×X → B × B

and let
p̂ = p| : E = p−1(τB)→ τB.

Thus, there is a commuting diagram

E
p̂−−−−→ τBy y

B
idB−−−−→ B.

It follows from the stratified straightening phenomena [13] that the local triviality
condition is satisfied, so that the diagram is a vertex of

B1(q, TOPlevel
s (q) rel τB).

Once again the proof of the following result follows that of the corresponding man-
ifold approximate fibration result in [17] using the stratified results of [12] and
[13].

Theorem 10.3 (MSAF Classification). The differential

d : MSAF(B)q → B1(q, TOPlevel
s (q) rel τB)

is a homotopy equivalence.

Corollary 10.4. Controlled, stratum preserving homeomorphism classes of strat-
ified manifold approximate fibrations over B with fibre germ q are in one-to-one
correspondence with homotopy classes of lifts of the map τ : B → BTOPi which
classifies the tangent bundle of B, to BTOPlevel

s (q):

BTOPlevel
s (q)y

B
τ−−−−→ BTOPi .

Proof. Combine Theorem 10.3, Proposition 10.2 and Proposition 5.8. �

Finally, observe that Corollary 10.4 can be combined with Theorem 8.3 to give
a classification of neighborhood germs of B with fixed local type.
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