
45 SLIDES ON CHAIN DUALITY

ANDREW RANICKI

Abstract The texts of 45 slides1 on the applications of chain duality to the ho-
mological analysis of the singularities of Poincaré complexes, the double points of
maps of manifolds, and to surgery theory.

1. Introduction

• Poincaré duality

Hn−∗(M ) ∼= H∗(M )

is the basic algebraic property of an n-dimensional manifold M .
• A chain complex C with n-dimensional Poincaré duality

Hn−∗(C) ∼= H∗(C)

is an algebraic model for an n-dimensional manifold, generalizing the intersection
form.

• Spaces with Poincaré duality (such as manifolds) determine Poincaré dual-
ity chain complexes in additive categories with chain duality, giving rise to
interesting invariants, old and new.

2. What is chain duality?

• A = additive category.
• B(A) = additive category of finite chain complexes in A .
• A contravariant additive functor T : A → B (A) extends to

T : B (A) → B (A) ; C → T (C)

by the total double complex

T (C)n =
∑

p+q=n

T (C−p)q .

• Definition: A chain duality (T, e) on A is a contravariant additive functor
T : A → B (A), together with a natural transformation e : T 2 → 1 : A → B (A)
such that for each object A in A :

– e(T (A)) . T (e(A)) = 1 : T (A) → T (A) ,
– e(A) : T 2(A) → A is a chain equivalence.

1The lecture at the conference on Surgery and Geometric Topology, Josai University, Japan

on 17 September, 1996 used slides 1.–36.
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3. Properties of chain duality

• The dual of an object A is a chain complex T (A).
• The dual of a chain complex C is a chain complex T (C).
• Motivated by Verdier duality in sheaf theory.
• A.Ranicki, Algebraic L-theory and topological manifolds,

Tracts in Mathematics 102, Cambridge (1992)

4. Involutions

• An involution (T, e) on an additive category A is a chain duality such that
T (A) is a 0-dimensional chain complex (= object) for each object A in A,
with e(A) : T 2(A) → A an isomorphism.

• Example: An involutionR→ R; r → r on a ring R determines the involution
(T, e) on the additive category A(R) of f.g. free left R-modules:

– T (A) = HomR(A,R)
– R× T (A) → T (A) ; (r, f) → (x → f(x)r)
– e(A)−1 : A → T 2(A) ; x→ (f → f(x)).

5. Manifolds and homeomorphisms up to homotopy

• Traditional questions of surgery theory:
– Is a space with Poincaré duality homotopy equivalent to a

manifold?
– Is a homotopy equivalence of manifolds homotopic to a

homeomorphism?
• Answered for dimensions ≥ 5 by surgery exact sequence in terms of the

assembly map

A : H∗(X; L•(Z)) → L∗(Z[π1(X)]) .

• L-theory of additive categories with involution suffices for surgery groups
L∗(Z[π1(X)]).

• Need chain duality for the generalized homology groups H∗(X; L•(Z)) and A.

6. Manifolds and homeomorphisms

• Will use chain duality to answer questions of the type:
– Is a space with Poincaré duality a manifold?
– Is a homotopy equivalence of manifolds a homeomorphism?

7. Controlled topology

• Controlled topology (Chapman-Ferry-Quinn) considers:
– the approximation of manifolds by Poincaré complexes,
– the approximation of homeomorphisms of manifolds by homotopy equiv-

alences.
• Philosophy of controlled topology, with control map 1 : X → X :

– A Poincaré complex X is a homology manifold if and only if it is an
ε-controlled Poincaré complex for all ε > 0.

– A map of homology manifolds f : M → X has contractible point inverses
if and only if it is an ε-controlled homotopy equivalence for all ε > 0.
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8. Simplicial complexes

• In dealing with applications of chain duality to topology will only work with
(connected, finite) simplicial complexes and (oriented) polyhedral homology
manifolds and Poincaré complexes.

• Can also work with ∆-sets and topological spaces, using the methods of:
– M.Weiss, Visible L-theory, Forum Math. 4, 465–498 (1992)
– S.Hutt, Poincaré sheaves on topological spaces, Trans. A.M.S. (1996)

9. Simplicial control

• Additive category A(Z, X) ofX-controlled Z-modules for a simplicial complex
X.

– A.Ranicki and M.Weiss, Chain complexes and assembly, Math. Z. 204,
157–186 (1990)

• Will use chain duality on A(Z, X) to obtain homological obstructions for de-
ciding:

– Is a simplicial Poincaré complex X a homology manifold?
(Singularities)

– Does a degree 1 map f : M → X of polyhedral homology manifolds have
acyclic point inverses? (Double points)

• Acyclic point inverses H̃∗(f−1(x)) = 0 is analogue of homeomorphism in the
world of homology.

10. The X-controlled Z-module category A(Z, X)

• X = simplicial complex.
• A (Z, X)-module is a finitely generated free Z-module A with direct sum

decomposition
A =

∑
σ∈X

A(σ) .

• A (Z, X)-module morphism f : A → B is a Z-module morphism such that

f(A(σ)) ⊆
∑
τ≥σ

B(τ ) .

• Proposition: A (Z, X)-module chain map f : C → D is a chain equivalence
if and only if the Z-module chain maps

f(σ, σ) : C(σ) → D(σ) (σ ∈ X)

are chain equivalences.

11. Functorial formulation

• Regard simplicial complex X as the category with:
– objects: simplexes σ ∈ X
– morphisms: face inclusions σ ≤ τ .

• A (Z, X)-module A =
∑

σ∈X

A(σ) determines a contravariant functor

[A] : X → A(Z) = {f.g. free abelian groups} ; σ → [A][σ] =
∑
τ≥σ

A(τ ) .
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• The (Z, X)-module category A(Z, X) is a full subcategory of the category of
contravariant functors X → A(Z).

12. Dual cells

• The barycentric subdivision X′ of X is the simplicial complex with one n-
simplex σ̂0σ̂1 . . . σ̂n for each sequence of simplexes in X

σ0 < σ1 < · · · < σn .

• The dual cell of a simplex σ ∈ X is the contractible subcomplex

D(σ,X) = {σ̂0σ̂1 . . . σ̂n |σ ≤ σ0} ⊆ X′ ,

with boundary

∂D(σ,X) = {σ̂0σ̂1 . . . σ̂n |σ < σ0} ⊆ D(σ,X) .

• Introduced by Poincaré to prove duality.
• A simplicial map f : M → X ′ has acyclic point inverses if and only if

(f |)∗ : H∗(f−1D(σ,X)) ∼= H∗(D(σ,X)) (σ ∈ X) .

13. Where do (Z, X)-module chain complexes come from?

• For any simplicial map f : M → X ′ the simplicial chain complex ∆(M ) is a
(Z, X)-module chain complex:

∆(M )(σ) = ∆(f−1D(σ,X), f−1∂D(σ,X))

with a degreewise direct sum decomposition

[∆(M )][σ] =
∑
τ≥σ

∆(M )(τ ) = ∆(f−1D(σ,X)) .

• The simplicial cochain complex ∆(X)−∗ is a (Z, X)-module chain complex
with:

∆(X)−∗(σ)r =

{
Z if r = −|σ|
0 otherwise.

14. The (Z, X)-module chain duality

• Proposition: The additive category A(Z, X) of (Z, X)-modules has a chain
duality (T, e) with

T (A) = HomZ(Hom(Z,X)(∆(X)−∗, A),Z)

• TA(σ) = [A][σ]|σ|−∗

• T (A)r(σ) =


∑

τ≥σ

HomZ(A(τ ),Z) if r = −|σ|
0 if r 6= −|σ|

• T (C) 'Z Hom(Z,X)(C,∆(X ′))−∗ 'Z HomZ(C,Z)−∗

• T (∆(X′)) '(Z,X) ∆(X)−∗

• Terminology T (C)n−∗ = T (C∗+n) (n ≥ 0)
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15. Products

• The product of (Z, X)-modules A,B is the (Z, X)-module

A⊗(Z,X) B =
∑

λ,µ∈X,λ∩µ6=∅
A(λ) ⊗Z B(µ) ⊆ A⊗Z B ,

(A⊗(Z,X) B)(σ) =
∑

λ,µ∈X,λ∩µ=σ

A(λ) ⊗Z B(µ) .

• C ⊗(Z,X) ∆(X ′) '(Z,X) C .
• T (C) ⊗(Z,X) D 'Z Hom(Z,X)(C,D) .
• For simplicial maps f : M → X ′, g : N → X ′

– ∆(M ) ⊗(Z,X) ∆(N ) '(Z,X) ∆((f × g)−1∆X)
– T∆(M ) ⊗(Z,X) T∆(N ) 'Z ∆(M ×N,M ×N\(f × g)−1∆X)−∗ .

16. Cap product

• The Alexander-Whitney diagonal chain approximation

∆ : ∆(X ′) → ∆(X ′) ⊗Z ∆(X ′) ;

(x̂0 . . . x̂n) →
n∑

i=0

(x̂0 . . . x̂i) ⊗ (x̂i . . . x̂n)

is the composite of a chain equivalence

∆(X ′) '(Z,X) ∆(X ′) ⊗(Z,X) ∆(X ′)

and the inclusion

∆(X ′) ⊗(Z,X) ∆(X ′) ⊆ ∆(X′) ⊗Z ∆(X ′) .

• Homology classes [X] ∈ Hn(X) are in one-one correspondence with the chain
homotopy classes of (Z, X)-module chain maps

[X] ∩ − : ∆(X)n−∗ → ∆(X ′) .

17. Homology manifolds

• Definition: A simplicial complex X is an n-dimensional homology manifold
if

H∗(X,X\σ̂) =

{
Z if ∗ = n

0 otherwise
(σ ∈ X) .

• Proposition: A simplicial complexX is an n-dimensional homology manifold
if and only if there exists a homology class [X] ∈ Hn(X) such that the cap
product

[X] ∩ − : ∆(X)n−∗ → ∆(X ′)

is a (Z, X)-module chain equivalence.
• Proof: For any simplicial complex X

H∗(X,X\σ̂) = H∗−|σ|(D(σ,X), ∂D(σ,X)) ,

Hn−∗(D(σ,X)) =

{
Z if ∗ = n

0 otherwise
(σ ∈ X) .
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18. Poincaré complexes

• Definition: An n-dimensional Poincaré complex X is a simplicial complex
with a homology class [X] ∈ Hn(X) such that

[X] ∩ − : Hn−∗(X) ∼= H∗(X) .

• Poincaré duality theorem: An n-dimensional homology manifold X is an
n-dimensional Poincaré complex.

• Proof: A (Z, X)-module chain equivalence

[X]∩ − : ∆(X)n−∗ → ∆(X ′)

is a Z-module chain equivalence.
• There is also a Z[π1(X)]-version.

19. McCrory’s Theorem

• X = n-dimensional Poincaré complex
– X ×X is a 2n-dimensional Poincaré complex.
– Let V ∈ Hn(X ×X) be the Poincaré dual of ∆∗[X] ∈ Hn(X ×X).
– Exact sequence

Hn(X ×X,X ×X\∆X) → Hn(X ×X) → Hn(X ×X\∆X) .

Theorem (McCrory) X is an n-dimensional homology manifold if and
only if V has image 0 ∈ Hn(X ×X\∆X).

• A characterization of homology manifolds, J. Lond. Math. Soc. 16 (2), 149–
159 (1977)

20. Chain duality proof of McCrory’s Theorem

• V has image 0 ∈ Hn(X × X\∆X) if and only if there exists U ∈ Hn(X ×
X,X ×X\∆X) with image V .

• U is a chain homotopy class of (Z, X)-module chain maps ∆(X ′) → ∆(X)n−∗,
since

Hn(X ×X,X ×X\∆X) = Hn(T∆(X) ⊗(Z,X) T∆(X))

= H0(Hom(Z,X)(∆(X′),∆(X)n−∗)) .

• U is a chain homotopy inverse of

φ = [X]∩ − : ∆(X)n−∗ → ∆(X ′)

with

φU = 1 ∈ H0(Hom(Z,X)(∆(X′),∆(X ′))) = H0(X) ,

φ = Tφ , (TU )φ = (TU )(Tφ) = T (φU ) = 1 .
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21. The homology tangent bundle

• The tangent bundle τX of a manifold X is the normal bundle of the diagonal
embedding

∆ : X → X ×X ; x→ (x, x) .
• The homology tangent bundle τX of an n-dimensional homology manifold X

is the fibration

(X,X\{∗}) −−−−→ (X ×X,X ×X\∆X) −−−−→ X

with X ×X → X; (x, y) → x.
• Thom space of τX

T (τX) = (X ×X)/(X ×X\∆X) .

• Thom class of τX

U ∈ H̃n(T (τX)) = Hn(X ×X,X ×X\∆X)

has image V ∈ Hn(X ×X).

22. Euler

• The Euler characteristic of a simplicial complex X is

χ(X) =
∞∑

r=0

(−)rdimRHr(X; R) ∈ Z .

• For an n-dimensional Poincaré complex X

χ(X) = ∆∗(V ) ∈ Hn(X) = Z .

• The Euler class of n-plane bundle η over X

e(η) = [U ] ∈ im(H̃n(T (η)) → Hn(X)) .

• Reformulation of McCrory’s Theorem:
an n-dimensional Poincaré complex X is a homology manifold if and only if
V ∈ Hn(X ×X) is the image of Thom class U ∈ H̃n(T (τX)), in which case

χ(X) = e(τX) ∈ Hn(X) = Z .

23. Degree 1 maps

• A map f : M → X of n-dimensional Poincaré complexes has degree 1 if

f∗[M ] = [X] ∈ Hn(X) .

• A homology equivalence has degree 1.
• The Umkehr Z-module chain map of a degree 1 map f : M → X

f ! : ∆(X) ' ∆(X)n−∗ f∗
−−−−→ ∆(M )n−∗ ' ∆(M )

is such that ff ! ' 1 : ∆(X) → ∆(X).
• A degree 1 map f is a homology equivalence if and only if

f !f ' 1 : ∆(M ) → ∆(M ) ,

if and only if

(f ! ⊗ f !)∆∗[X] = ∆∗[M ] ∈ Hn(M ×M ) .
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24. The double point set

• Does a degree 1 map of n-dimensional homology manifolds f : M → X have
acyclic point inverses?

• Obstruction in homology of double point set

(f × f)−1∆X = {(x, y) ∈M ×M | f(x) = f(y) ∈ X}.
• Define maps

i : M → (f × f)−1∆X ; a→ (a, a) ,

j : (f × f)−1∆X → X ; (x, y) → f(x) = f(y)

such that f = ji : M → X.
• The Umkehr map

j ! : Hn(X) ∼= Hn(X ×X,X ×X\∆X)

→ Hn(M ×M,M ×M\(f × f)−1∆X)
∼= Hn((f × f)−1∆X) (Lefschetz duality)

is such that j∗j ! = 1.

25. Lefschetz

• Lefschetz duality: If W is an m-dimensional homology manifold and A ⊆ W
is a subcomplex then

H∗(W,W\A) ∼= Hm−∗(A) .

• Proof: For any regular neighbourhood (V, ∂V ) of A in W there are defined
isomorphisms

H∗(W,W\A) ∼= H∗(W,W\V ) (homotopy invariance)
∼= H∗(W,W\V ) (collaring)
∼= H∗(V, ∂V ) (excision)
∼= Hm−∗(V ) (Poincaré-Lefschetz duality)
∼= Hm−∗(A) (homotopy invariance).

• Alexander duality is the special case W = Sm.

26. Acyclic Point Inverse Theorem

Theorem A degree 1 map f : M → X of n-dimensional homology
manifolds has acyclic point inverses if and only if

i∗[M ] = j ![X] ∈ Hn((f × f)−1∆X) .

• Equivalent conditions:
– i∗ : Hn(M ) ∼= Hn((f × f)−1∆X) ,
– i∗ : H∗(M ) ∼= H∗((f × f)−1∆X) ,
– H lf

∗ ((f × f)−1∆X\∆M) = 0 .
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• Conditions satisfied if f : M → X is injective, with

(f × f)−1∆X = ∆M .

• In general, i∗ 6= j !f∗ and i∗[M ] 6= j ![X] .

27. Proof of Theorem - Part I

• A simplicial map f : M → X ′ has acyclic point inverses if and only if f :
∆(M ) → ∆(X ′) is a (Z, X)-module chain equivalence.

• For degree 1 map f : M → X′ of n-dimensional homology manifolds define
the Umkehr (Z, X)-module chain map

f ! : ∆(X ′) ' ∆(X′)n−∗ f∗
−−−−→ ∆(M )n−∗ ' ∆(M ) .

• f ! is a chain homotopy right inverse for f

ff ! ' 1 : ∆(X ′) → ∆(X ′) .

• f ! is also a chain homotopy left inverse for f if and only if

f !f = 1 ∈ H0(Hom(Z,X)(∆(M ),∆(M ))) .

28. Proof of Theorem - Part II

• Use the (Z, X)-Poincaré duality

∆(M )n−∗ ' ∆(M )

and the properties of chain duality in A(Z, X) to identify

1 = i∗[M ] , f !f = j ![X] ∈ H0(Hom(Z,X)(∆(M ),∆(M )))

= H0(Hom(Z,X)(∆(M )n−∗,∆(M )))

= Hn(∆(M ) ⊗(Z,X) ∆(M ))

= Hn((f × f)−1∆X) .

29. Cohomology version of Theorem

Theorem∗ A degree 1 map f : M → X of n-dimensional homology
manifolds has acyclic point inverses if and only if the Thom classes UM ∈
Hn(M ×M,M ×M\∆M), UX ∈ Hn(X ×X,X ×X\∆X) have the same
image in Hn(M ×M,M ×M\(f × f)−1∆X).

• Same proof as homology version, after Lefschetz duality identifications

UM = [M ] ∈ Hn(M ×M,M ×M\∆M) = Hn(M ) ,

UX = [X] ∈ Hn(X ×X,X ×X\∆X) = Hn(X) ,

Hn(M ×M,M ×M\(f × f)−1∆X) = Hn((f × f)−1∆X) .
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30. The double point obstruction

• The double point obstruction of a degree 1 map f : M → X of homology
manifolds

i∗[M ]− j ![X] ∈ Hn((f × f)−1∆X)
is 0 if and only if f has acyclic point inverses.

• The obstruction has image

χ(M ) − χ(X) ∈ Hn(M ) = Z .

• If f is covered by a map of homology tangent bundles

b : (M ×M,M ×M\∆M) → (X ×X,X ×X\∆X)

then
– UM = b∗UX ∈ Hn(M ×M,M ×M\∆M),
– the double point obstruction is 0, and f has acyclic point inverses.

31. Normal maps

• A degree 1 map f : M → X of n-dimensional homology manifolds is normal
if it is covered by a map b : τM ⊕ε∞ → τX ⊕ε∞ of the stable tangent bundles.

• The stable map of Thom spaces

T (b) : Σ∞T (τM ) → Σ∞T (τX)

induces a map in cohomology

T (b)∗ : H̃n(T (τX)) = Hn(X ×X,X ×X\∆X)

→ H̃n(T (τM )) = Hn(M ×M,M ×M\∆M)

which sends the Thom class UX to UM .
• However, Theorem∗ may not apply to a normal map (f, b) : M → X, since in

general

(f × f)∗ 6= (inclusion)∗T (b)∗ : H̃n(T (τX ))

→ Hn(M ×M,M ×M\(f × f)−1∆X)

(dual of i∗ 6= j !f∗).

32. The surgery obstruction

• The Wall surgery obstruction of a degree 1 normal map (f, b) : M → X of
n-dimensional homology manifolds

σ∗(f, b) ∈ Ln(Z[π1(X)])

is 0 if (and for n ≥ 5 only if) (f, b) is normal bordant to a homotopy equiva-
lence.

• A degree 1 map f : M → X with acyclic point inverses is a normal map with
zero surgery obstruction.

• What is the relationship between the double point obstruction of a degree 1
normal map (f, b) : M → X and the surgery obstruction?

• Use chain level surgery obstruction theory:
A.Ranicki, The algebraic theory of surgery, Proc. Lond. Math. Soc. (3) 40,
87–283 (1980)
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33. Quadratic Poincaré complexes

• The simply-connected surgery obstruction σ∗(f, b) ∈ Ln(Z) is the cobordism
class of the n-dimensional quadratic Poincaré complex

(C,ψ) = (C(f !), (e⊗ e)ψb)

where
– e : ∆(M ) → C(f !) is the inclusion in the algebraic mapping cone of the

Z-module chain map f ! : ∆(X) → ∆(M ),
– the quadratic structure ψ is the image of

ψb ∈ Hn(EΣ2 ×Σ2 (M ×M )) = Hn(W ⊗Z[Σ2 ] (∆(M ) ⊗Z ∆(M ))) ,

– EΣ2 = S∞, a contractible space with a free Σ2-action,
– W = ∆(EΣ2).

• There is also a Z[π1(X)]-version.

34. The double point and surgery obstructions - Part I

• For any degree 1 map f : M → X of n-dimensional homology manifolds the
composite of

i∗f ! − j ! : H∗(X) → H∗((f × f)−1∆X)

and H∗((f × f)−1∆X) → H∗(M ×M ) is

∆∗f ! − (f ! ⊗ f !)∆∗ : H∗(X) → H∗(M ×M ) .

• For a degree 1 normal map (f, b) : M → X

Hn((f × f)−1∆X) → Hn(M ×M )

sends the double point obstruction i∗[M ]− j ![X] to

(1 + T )ψb = ∆∗[M ]− (f ! ⊗ f !)∆∗[X] ∈ Hn(M ×M ) .

• (1 + T )ψb = 0 if and only if f is a homology equivalence.

35. The double point and surgery obstructions - Part II

• A degree 1 normal map (f, b) : M → X of n-dimensional homology manifolds
determines the X-controlled quadratic structure

ψb,X ∈ Hn(EΣ2 ×Σ2 (f × f)−1∆X)

= Hn(W ⊗Z[Σ2 ] (∆(M ) ⊗(Z,X) ∆(M ))) .

• ψb,X has images
– the quadratic structure

[ψb,X ] = ψb ∈ Hn(EΣ2 ×Σ2 (M ×M )) ,

– the double point obstruction

(1 + T )ψb,X = i∗[M ]− j ![X] ∈ Hn((f × f)−1∆X) .
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36. The normal invariant

• The X-controlled quadratic Poincaré cobordism class

σX
∗ (f, b) = (C(f !), (e ⊗ e)ψb,X ) ∈ Ln(A(Z, X)) = Hn(X; L•(Z))

is the normal invariant of an n-dimensional degree 1 normal map (f, b) : M →
X.

• σX
∗ (f, b) = 0 if (and for n ≥ 5 only if) (f, b) is normal bordant to a map with

acyclic point inverses.
• The non-simply-connected surgery obstruction of (f, b) is the assembly of the

normal invariant

σ∗(f, b) = AσX
∗ (f, b) ∈ Ln(Z[π1(X)]) .

37. Hom and Derived Hom

• For (Z, X)-modules A,B the additive group Hom(Z,X)(A,B) does not have a
natural (Z, X)-module structure, but the chain duality determines a natural
(Z, X)-module resolution.

• Derived Hom of (Z, X)-module chain complexes C,D

RHom(Z,X)(C,D) = T (C) ⊗(Z,X) D .

• Adjoint properties:

RHom(Z,X)(C,D) 'Z Hom(Z,X)(C,D)

RHom(Z,X)(T (C), D) '(Z,X) C ⊗(Z,X) D .

• D = ∆(X′) is the dualizing complex for chain duality

T (C) '(Z,X) RHom(Z,X)(C,∆(X ′))

as for Verdier duality in sheaf theory.

38. When is a Poincaré complex homotopy equivalent to a manifold?

• Every n-dimensional topological manifold is homotopy equivalent to an n-
dimensional Poincaré complex

• Is every n-dimensional Poincaré complex homotopy equivalent to an n-dimensional
topological manifold?

• From now on n ≥ 5
• Browder-Novikov-Sullivan-Wall obstruction theory has been reformulated in

terms of chain duality
– the total surgery obstruction.

39. Browder-Novikov-Sullivan-Wall theory

• An n-dimensional Poincaré complexX is homotopy equivalent to an n-dimensional
topological manifold if and only if
1. the Spivak normal fibration of X admits a topological reduction,
2. there exists a reduction such that the corresponding normal map (f, b) :
M → X has surgery obstruction

σ∗(f, b) = 0 ∈ Ln(Z[π1(X)]) .
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40. Algebraic Poincaré cobordism

• Λ = ring with involution.
• Ln(Λ) = Wall surgery obstruction group

= the cobordism group of n-dimensional quadratic Poincaré
complexes over Λ

– n-dimensional f.g. free Λ-module chain complexes C with

Hn−∗(C) ∼= H∗(C) ,

– uses ordinary duality

Cn−∗ = HomΛ(C,Λ)∗−n .

41. Assembly

• X = connected simplicial complex
– X̃ = universal cover
– p : X̃ → X covering projection.

• Assembly functor

A : A(Z, X) = {(Z, X)-modules} → A(Z[π1(X)]) = {Z[π1(X)]-modules} ;

M =
∑

σ∈X

M (σ) →M (X̃) =
∑
eσ∈ eX

M (pσ̃) .

• The assembly A(T (M )) of dual (Z, X)-module chain complex

T (M ) 'Z Hom(Z,X)(M,∆(X ′))

is chain equivalent to dual Z[π1(X)]-module

M (X̃)∗ = HomZ[π1(X)](M (X̃),Z[π1(X)]) .

42. The algebraic surgery exact sequence

• For any simplicial complex X exact sequence

· · · → Hn(X; L•(Z)) A→ Ln(Z[π1(X)]) → Sn(X) → Hn−1(X; L•(Z)) → . . .

with
• A = assembly,
• L•(Z) = the 1-connective simply-connected surgery spectrum

– π∗(L•(Z)) = L∗(Z) ,
• Hn(X; L•(Z)) = generalized homology group

– cobordism group of n-dimensional quadratic Poincaré (Z, X)-module com-
plexes C ' T (C)n−∗

– uses chain duality

T (C)n−∗ '(Z,X) RHom(Z,X)(C,∆(X ′))∗−n .

43. The structure group

• X = simplicial complex.
• Sn(X) = structure group.
• Sn(X) = cobordism group of

– (n − 1)-dimensional quadratic Poincaré (Z, X)-module complexes
– with contractible Z[π1(X)]-module assembly.
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44. Local and global Poincaré duality

• X = n-dimensional Poincaré complex.
• The cap product [X] ∩− : ∆(X)n−∗ → ∆(X ′):

– is a (Z, X)-module chain map,
– assembles to Z[π1(X)]-module chain equivalence

[X] ∩ − : ∆(X̃)n−∗ → ∆(X̃′) .

• The algebraic mapping cone

C = C([X] ∩ − : ∆(X)n−∗ → ∆(X ′))∗−1

– is an (n− 1)-dimensional quadratic Poincaré (Z, X)-module
complex,

– with contractible Z[π1(X)]-assembly.
• X is a homology manifold if and only if C is (Z, X)-contractible.

45. The total surgery obstruction

• X = n-dimensional Poincaré complex.
• The total surgery obstruction of X is the cobordism class

s(X) = C([X] ∩ −)∗−1 ∈ Sn(X) .

• Theorem 1: X is homotopy equivalent to an n-dimensional topological man-
ifold if and only if s(X) = 0 ∈ Sn(X).

• Theorem 2: A homotopy equivalence f : M → N of n-dimensional topolog-
ical manifolds has a total surgery obstruction s(f) ∈ Sn+1(N ) such that f is
homotopic to a homeomorphism if and only if s(f) = 0.

– Should also consider Whitehead torsion.
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