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1 Introduction

The famous Poincaré-Hopf theorem states that the index Ind(V ) of a continuous

tangent vector field V on a compact smooth manifold X is equal to the Euler char-

actersitic χ(X) of X, if V has only isolated zeros away from the boundary and V

points outward on the boundary of X. If we assume that the vectors on some of

the boundary components point inward and point outward on the other components,

then the formula will look like:

Ind(V ) = χ(X) − χ(∂−X) ,

where ∂−X denotes the union of the boundary components on which the vectors point

inward. This can be observed by looking at the Morse function of the pair (X, ∂−X).

In [4], M. Morse relaxed the requirement on the boundary behavior and obtained a

formula
Ind(V ) + Ind(∂−V ) = χ(X) .

Actually the requirement that the singularities are isolated are also relaxed. This

formula has been rediscovered and extended by several authors [5] [1] [2]. Although

we consider only vector fields whose zeros are isolated in this paper, we will allow zeros

on the boundary. To understand such vector fields, we need to have a knowledge of

a vector field with non-isolated singular points.

So let us briefly review the definition of the local index i(V, S) of a vector field V

on an n-dimensional manifold X along a set S of zeros of V . Let S(V ) be the set of
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all the zeros of V . We assume that there is a compact codimension 0 submanifold Y

of X such that S = Y ∩ S(V ) and that ∂Y ∩ S = ∅. Suppose that Y embeds in an

n-dimensional Euclidean space, then V on ∂Y induces a map V : ∂Y → Sn−1. The

local index i(V, S) is the sum of the degrees of V on the connected components of ∂Y .

In a general case, embed Y in some Euclidean space E. Consider the normal bundle

of Y in E and identify its disk bundle of a small radius with a compact codimension

0 submanifold N (possibly with corner) of E via the map that sends (y, v) to y + v,

where y is a point of Y and v is a normal vector to Y at y. Extend V |Y to a vector

field W on N by W (y, v) = V (y) + v. The set of the zeros of W is S. Now the local

index i(V, S) is defined to be i(W,S).

Let X be an n-dimensional compact smooth manifold with boundary ∂X, and fix a

Riemanian metric on X. We assume n ≥ 1. For a continuous tangent vector field V

on X and a point p of its boundary, we define the vector ∂V (p) to be the orthogonal

projection of V (p) to the tangent space of ∂X at p. The tangent vector field ∂V on

∂X is called the boundary of V . ∂⊥V denotes the normal vector field on ∂X defined

by ∂⊥V (p) = V (p) − ∂V (p). A zero p of ∂V is said to be of type + if V (p) is an

outward vector. It is of type − if V (p) is an inward vector. It is of type 0 if it is also

a zero of V .

Suppose p is an isolated zero of V . If p is in the interior of X, then the local

index Ind(V, p) of V at p is defined as is well known; it is an integer. When p is on

the boundary and is an isolated zero of ∂V , we will define the normal local index

Indν(V, p) of V at p which is either an integer or a half-integer in the next section;

when p is an isolated zero of ∂⊥V , we will define the tangential local index Indτ (V, p)

of V at p. This may be a half-integer, too, when n ≤ 2. These two local indices are

not necessarily the same when they are both defined.

When the zeros of V and ∂V are all isolated, we define the normal index Indν(V )

of V to be the sum of the local indices at the zeros in the interior and the normal

local indices at the zeros on the boundary. The sum of the local indices of ∂V at the

zeros of type + (resp. −, 0) is denoted Ind(∂+V ) (resp. Ind(∂−V ), Ind(∂0V )).

Theorem 1.1. Suppose X is an n-dimensional compact smooth manifold and V is a

continuous tangent vector field on X. If V and ∂V have only isolated zeros, then the
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following equality holds:

Indν(V ) +
1
2

Ind(∂0V ) + Ind(∂−V ) = χ(X) .

Remarks 1.2. (1) The local index of a zero of the zero vector field on a 0-dimensional

manifold is always 1. So, when n = 1, Ind(∂0V ) is the number of the zeros on the

boundary, and Ind(∂−V ) is the number of boundary points at which the vector points

inward.

(2) The special case where the vectors V (p) are tangent to the boundary for all p ∈ ∂X

were discussed in [3]; see the review by J. M. Boardman in Mathematical Reviews.

When the zeros of V are isolated and the zeros of V on the boundary are the only

zeros of ∂⊥V (p), we will define the tangential index Indτ (V ) of V to be the sum of the

local indices of V at the zeros in the interior and the tangential local indices at the

zeros on the boundary. If the dimension of X is bigger than 2, then the assumption

on V forces the connected components of the boundary of X to be classified into the

following two types:

1. vectors point outward except at the isolated zeros,

2. vectors point inward except at the isolated zeros.

The union of the components of the first type is denoted ∂+X, and the union of the

components of the second type is denoted ∂−X. If the dimension of X is 1, then the

boundary components are single points; so the vector at the boundary either points

outward, inward, or is zero, and accordingly the boundary ∂X is split into ∂+X, ∂−X,

and ∂0X.

Theorem 1.3. Suppose X is an n-dimensional compact smooth manifold and V is a

continuous tangent vector field on X. If the zeros of V are isolated and the zeros of

V on the boundary are the only zeros of ∂⊥V (p), then the following equality holds:

Indτ (V ) =


χ(X) if n is even,

χ(X) − χ(∂−X) if n ≥ 3,

χ(X) − 1
2χ(∂0X) − χ(∂−X) if n = 1.

In the last section, we will give an alternative formulation of these theorems. For
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example, suppose that the dimension n of X is even and V has only isolated zeros.

Further assume that, the boundary is split up into two compact submanifolds ∂τX

and ∂νX which meet along their common boundary C such that the zeros of ∂V in

∂τX \C are isolated and the zeros of ∂⊥V in ∂νX \C are isolated. Then the sum of

certain local indices is equal to χ(X) − χ(C) (Theorem 5.5).

2 Local Indices of an Isolated Zero on the Boundary

In this section, we describe the two local indices of a vector field V at an isolated

zero on the boundary.

Let X be an n-dimensional compact smooth manifold with boundary ∂X. We fix

an embedding of ∂X in a Euclidean space RN of a sufficiently high dimension so that,

under the identification RN = 1 × RN , it extends to an an embedding of (X, ∂X) in

([1,∞) × RN , 1 × RN ) such that X ∩ [1, 2] × RN = [1, 2] × ∂X.

Now suppose p is an isolated zero sitting on the boundary ∂X. Let us take local

cordinates y1, y2, . . . , yn around p such that y1 is equal to the first coordinate of

[1,∞) × RN and p corresponds to a = (1, 0, . . . , 0) ∈ Rn. V defines a vector field

v on a neighborhood of a in the subset y1 ≥ 1. Choose a sufficiently small positive

number ε so that the right half Dn
+(a; ε) of the disk of radius ε with center at a is

contained in this neighborhood, and a is the only zero of v in Dn
+(a; ε). Let Hn−1

+ (a; ε)

(⊂ ∂Dn
+(a; ε)) denote the right hemisphere of radius ε with center at a. The vector

field v induces a continuous map v̄ : Hn−1
+ (a; ε) → Sn−1 to the (n − 1)-dimensional

unit sphere by:

v̄(x) =
v(x)
‖v(x)‖

.

Let Sn−2(a; ε) denote the boundary sphere of Hn−1
+ (a; ε). When n = 1, we understand

that it is an empty set. Assume that its image by v̄ is not the whole sphere Sn−1.

Pick up a “direction” d ∈ Sn−1 \ v̄(Sn−2(a; ε)), then v̄ determines an integer, denoted

i(v, a; d), in Hn−1(Sn−1, Sn−1 \{d}) = Z. Here we use the compatible orientations for

Hn−1
+ (a; ε) and Sn−1. It is the algebraic intersection number of v̄ with {d} ⊂ Sn−1,

and is locally constant as a function of d. A pair of antipodal points {d,−d} of Sn−1 is

said to be admissible if they are both in Sn−1 \ v̄(Sn−2(a; ε)). For such an admissible
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pair {±d}, we define a possibly-half-integer i(v, a;±d) to be the average of the two

integers i(v, a; d) and i(v, a;−d):

i(v, a;±d) =
1
2
i(v, a; d) +

1
2
i(v, a;−d) .

In the case of n = 1, there is only one admissible pair {±1} = S0, and

i(v, 1;±1) =

{
1
2 if v̄(1 + ε) = 1,
− 1

2 if v̄(1 + ε) = −1.

Definition 2.1. Suppose p is an isolated zero of ∂V . We may assume that ε is

sufficiently small, and that the pair {±e1} with e1 = (1, 0, . . . , 0) ∈ Sn−1 is admissible.

The normal local index Indν(V, p) of V at p is defined to be i(v, a;±e1).

Definition 2.2. Suppose p is an isolated zero of ∂⊥V . We define the tangential

local index Indτ (V, p) of V at p as follows: If n = 1, then Indτ (V, p) = i(v, 1;±1).

If n ≥ 2, then set Sn−2 = {e ∈ Sn−1|e ⊥ (1, 0, . . . , 0)}. We may assume that ε is

sufficiently small, and that, Sn−2 ⊂ Sn−1 \ v̄(Sn−2(a; ε)). When n = 2, there is only

one admissible pair in Sn−2 = S0. When n ≥ 3, the value of i(v, a; d) is independent

of the choice of d ∈ Sn−2, and i(v, a;±d) = i(v, a; d). So, for n ≥ 2, we define

Indτ (V, p) to be i(v, a;±d), where d is any point in Sn−2.

Remarks 2.3. (1) When n = 1, the two indices are the same.

(2) When n ≥ 3, Indτ (V, p) is an integer.

3 Proof of Theorem 1.1

We give a proof of Theorem 1.1. Assume that (X, ∂X) is embedded in ([1,∞) ×
RN , 1 × RN ) as in the previous section. We consider the double DX of X:

DX = ∂([−1, 1] × X) = {±1} × X ∪ [−1, 1] × ∂X .

DX can be embedded in R×RN as the union of three subsets X+, X−, [−1, 1]×∂X,

where X+ is X itself, X− is the image of the reflection r : R × RN → R × RN with

respect to 0 × RN , and ∂X ⊂ 1 × RN is regarded as a subset of RN .
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Let V = V+ be the given tangent vector field on X = X+. The reflection r induces

a tangent vector field r∗(V ) = V− on X−. We can extend these to obtain a tangent

vector field DV on DX by defining DV (t, x) to be

t + 1
2

V+(1, x) +
1 − t

2
V−(−1, x)

for (t, x) ∈ [−1, 1] × ∂X. Note that, on 0 × ∂X, we obtain the boundary ∂V of V .

There are four kinds of zeros of DV :

1. For each zero p of V in the interior of X, there are two zeros: the copy in the

interior of X+ and the copy in the interior of X−. They have the same local

index as the original one.

2. For each zero p = (1, x) of ∂V of type 0, the points (t, x) are all zeros of DV ,

and form an interval I. The local index along I is 2 Indν(V, p).

3. For each zero p = (1, x) ∈ ∂X of ∂V of type −, the point (0, x) is an isolated

zero of DV whose local index is equal to Ind(∂V, p).

4. For each zero p = (1, x) ∈ ∂X of ∂V of type +, the point (0, x) is an isolated

zero of DV whose local index is equal to − Ind(∂V, p).

One can verify the computation of the local indices in cases (2), (3), and (4) above

as follows: First define the local coordinates y1, . . . , yn around (0, x) extending the

yi’s around p = (1, x) described in §2 by
y1(t, ∗) = t for all t ≤ 1
yi(t, x′) = yi(1, x′) if i = 2, . . . , n and −1 ≤ t ≤ 1,

yi(t, x′′) = yi(−t, x′′) if i = 2, . . . , n and t ≤ −1 .

Let r : R × Rn−1 → R × Rn−1 be the reflection r(t, x′) = (−t, x′) and consider the

map
Dv̄ : r(Hn−1

+ (a; ε)) ∪ [−1, 1] × Sn−2(a; ε) ∪ Hn−1
+ (a; ε) → Sn−1

induced from DV , and compute the algebraic intersection number with e1 =

(1, 0, . . . , 0) in case (2) and with e2 = (0, 1, 0, . . . , 0) in cases (3) and (4). Note that

(3) and (4) do not occur when n = 1. Let v̄ : Hn−1
+ (a; ε) → Sn−1 be the map induced

by V as in §2. Note that v̄ can be defined not only for an isolated zero of ∂V of type
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0 but also for a zero of type ±1. Dv̄ is the double of v̄ in the sense that it is v̄ on the

subset Hn−1
+ (a; ε) and that it is the composite r ◦ v̄ ◦ r on the subset r(Hn−1

+ (a; ε));

therefore, for q ∈ r(Hn−1
+ (a; ε)), Dv̄(q) = e1 if and only if v̄(r(q)) = −e1. In case

(2), the vectors on the subset [−1, 1] × Sn−2(a; ε) and e1 are never parallel; so the

algebraic intersection of Dv̄ with e1 is i(v, a; e1) + i(v, a;−e1) = 2 Indν(V, p). In case

(3) (resp. (4)), we may assume that all the vectors Dv̄((t, x′)) (t 6= 0) point away

from (resp. toward) the hyperplane y1 = 0; therefore, the local index is equal to

Ind(∂V, p) (resp. − Ind(∂V, p)), since the y1 direction is preserved (resp. reversed) in

case (3) (resp. (4)).

Apply the Poincaré-Hopf index theorem to DV and ∂V ; we obtain the following

equalities:

2 Indν(V ) + Ind(∂−V ) − Ind(∂+V ) = 2χ(X) − χ(∂X) ,

Ind(∂0V ) + Ind(∂−V ) + Ind(∂+V ) = χ(∂V ) .

The desired formula follows immediately from these.

4 Proof of Theorem 1.3

When n = 1, the normal local index and the tangential local index are the same;

therefore, the n = 1 case follows from Theorem 1.1. So we assume that n ≥ 2.

Let DX be the double of X and let us use the same notation as in the first paragraph

of the previous section. We will define the twisted double D̃V of the vector field V

on X as follows: Ṽ+ = V is a vector field on X = X+. Consider −V ; the reflection r

induces a vector field Ṽ− = v∗(−V ) on X−. Extend these to obtain a tangent vector

field D̃V on DX by defining D̃V (t, x) to be

t + 1
2

Ṽ+(1, x) +
1 − t

2
Ṽ−(−1, x)

for (t, x) ∈ [−1, 1] × ∂X. In general, if V (p) is tangent to ∂X at p = (1, x) ∈ ∂X,

then the twisted double D̃V has a corresponding zero (0, x). We are assuming that

this happens only when p is a zero of V . Thus there are only two types of zeros of

D̃V :
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1. For each zero p of V in the interior of X, there are two zeros: the copy in the

interior of X+ which has the same local index as Ind(V, p) and the copy in the

interior of X− whose local index is equal to (−1)n Ind(V, p).

2. For each zero p = (1, x) of V on the boundary of X, the points (t, x) are all zeros

of D̃V , and form an interval I. The local index along I is equal to 2 Indτ (V, p)

if n is even and is equal to 0 if n is odd.

The computation of the local index in case (2) can be done in the following way. Let

us use the notation used in the previous section. In this case we consider

D̃v̄ : r(Hn−1
+ (a; ε)) ∪ [−1, 1] × Sn−2(a; ε) ∪ Hn−1

+ (a; ε) → Sn−1

induced from D̃V , and compute the algebraic intersection number with e2 =

(0, 1, 0, . . . , 0). D̃v̄ is the twisted double of v̄ in the sense that it is v̄ on the

subset Hn−1
+ (a; ε) and that it is the composite r ◦ A ◦ v̄ ◦ r on the subset

r(Hn−1
+ (a; ε)), where A : Sn−1 → Sn−1 is the antipodal map; therefore, for

q ∈ r(Hn−1
+ (a; ε)), D̃v̄(q) = e2 if and only if v̄(r(q)) = −e2. The vectors on the

subset [−1, 1] × Sn−2(a; ε) and e2 are never parallel; so the algebraic intersection of

D̃v̄ with e2 is i(v, a; e1) + (−1)ni(v, a;−e1) which is equal to 2 Indτ (V, p) if n is even

and is equal to 0 if n is odd.

So, if n is even, the Poincaré-Hopf formula for D̃V reduces to the desired formula

Indτ V = χ(X).

Next we consider the case where n ≥ 3. As we mentioned in the first section, the

components of ∂X are classified into two types:

1. vectors point outward except at the isolated zeros,

2. vectors point inward except at the isolated zeros.

Suppose that p is an isolated zero of V on a connected component C of ∂X and

that C is of the first type. Consider a small neighborhood of p and coordinates

{y1, . . . , yn} as in §2. The vector field v along y1 = 1 can be thought of as a map

ϕ(y2, . . . , yn) = (z1, z2, . . . , zn) from an open set U ⊂ Rn−1 to Rn satisfying z1 ≥ 0.

The equality holds if and only if (y2, . . . , yn) = (0, . . . , 0). Choose a very small number
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ε > 0. Using a homotopy

max{ε − (y2
2 + y2

3 + · · · + y2
n), 0}(−t, 0, . . . , 0) + ϕ(y2, . . . , yn) ,

one can add a collar along C and extend the vector field V over the added collar.

Repeat this process if there are more zeros on C until the vectors point outward

along the new boundary component. The zeros on the boundary component C now

lies in the interior, and the local indices are eaual to the corresponding tangential local

indices. We can do a similar modification in the case of the second type component,

and move all the zeros on the boundary into the interior. Now apply the Poincaré-

Hopf theorem to get:
Indτ V = χ(X) − χ(∂−X) .

This completes the proof.

5 An Alternative Formulation

Let V be a continuous vector field on an n-dimensional compact smooth manifold

X whose zeros are isolated. In the previous sections, we considered the zeros of V

as the only singular points, and defined the normal/tangential index as the sum of

local indices only at the zeros. In this section, the zeros of ∂V (in the normal index

case) and the zeros of ∂⊥V (in the tangential index case) are also regarded as singular

points of V . Note that the definition of the normal (resp. tangential) local index at

an isolated zero on the boundary given in §2 is valid for an isolated zero of ∂V (resp.

∂⊥V ).

Definition 5.1. When the zeros of V and ∂V are all isolated, the expanded normal

index Ind∗
ν(V ) of V is defined to be the sum of the local indices of V at the interior

zeros of V and the normal local indices of V at the zeros of ∂V . When the zeros of

V and ∂⊥V are all isolated, the expanded tangential index Ind∗
τ (V ) of V is defined to

be the sum of the local indices of V at the interior zeros of V and the tangential local

indices of V at the zeros of ∂⊥V .

Remark 5.2. Note that the tangential local index Indτ (V, p) at an isolated zero p of

∂⊥V is equal to zero if n ≥ 3 and p is not a zero of V ; this can be observed by
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choosing d ∈ Sn−2 to be not equal to ±v̄(p). Also note that, if n = 1, the zeros of

∂⊥V are automatically the zeros of V . Therefore, Ind∗
τ (V ) = Indτ (V ) if n 6= 2.

Theorem 5.3. Suppose X is an n-dimensional compact smooth manifold and V is a

continuous tangent vector field on X. If V and ∂V have only isolated zeros, then the

following equality holds:

Ind∗
ν(V ) =

{
χ(X) if n is even,

0 if n is odd.

Proof. Immediate from the proof of Theorem 1.3.

Theorem 5.4. Suppose X is an n-dimensional compact smooth manifold and V is

a continuous tangent vector field on X. If V and ∂⊥V have only isolated zeros, then

the following equality holds:

Ind∗
τ (V ) =


χ(X) if n is even,

χ(X) − χ(∂−X) if n ≥ 3,

χ(X) − 1
2χ(∂0X) − χ(∂−X) if n = 1.

Proof. The only difference between Theorem 1.3 and Theorem 5.4 is the existence of

the isolated zeros of ∂⊥V that are not the zeros of V . Since there is nothing to prove

when n = 1, we assume that n > 1.

Suppose n is even. There are three types of zeros of D̃V , not two; the third type is

an isolated zero (0, x) corresponding to p = (1, x) such that V (p) is a non-zero tangent

vector of ∂X as mentioned above. The local index of D̃V is 2 Ind∗
τ (V, p). Therefore

the Poincaré-Hopf formula for D̃V gives 2 Ind∗
τ (V ) = 2χ(X).

Next suppose n ≥ 3. Follow the proof of Theorem 1.3, treating the zeros of ∂⊥V

like the zeros of V on the boundary, and apply the Poincaré-Hopf theorem.

Thus, the two indices Ind∗
τ (V ) and Ind∗

ν(V ) coincide when the dimension n of X

is even and they are both defined. We can mix these two types of indices in the

following way. Let C be a codimension 1 submanifold of ∂X such that it splits ∂X

into two compact submanifolds ∂τX and ∂νX with ∂τX∩∂νX = C. We say that such

a decomposition (∂τX, ∂νX; C) is admissible for V if the following two conditions are

satisfied:
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1. The zeros of ∂V in ∂τX are isolated.

2. The zeros of ∂⊥V in ∂νX are isolated.

Suppose that it is the case. Change the smooth structure of X along C so that X is

a manifold with corner C. V is still a continuous vector field away from C. Leave V

undefined on C. In this way we are not losing information on V , since we can recover

the vectors V (x) for x ∈ C in the original smooth structure by the continuity of V .

We can consider the tangential local indices at isolated zeros of ∂V in ∂τX and

the normal local indices at isolated zeros of ∂⊥V in ∂νX. Let C1, . . . , Cm be the

connected components of C. We will define the local index i(V,Ci) ∈ Z[1/4] of V

about Ci as follows: First prepare two copies X± of X and define the double DτX of

X along ∂τX to be

DτX = X− ∪ [−1, 1] × ∂τX ∪ X+/ ∼ ,

where the equialence relation is generated by

• X− ⊃ ∂τX 3 x ∼ (−1, x) ∈ [−1, 1] × ∂τX,

• X+ ⊃ ∂τX 3 x ∼ (1, x) ∈ [−1, 1] × ∂τX,

• X− ⊃ C 3 x ∼ (t, x) ∼ x ∈ C ⊂ X+ for all t ∈ [−1, 1].

C can be thought of as a subset of DτX, and the vector fields V on X+ \ C and V

on X− \ C extends to a continuous vector field W on DτX \ C. Next prepare two

copies of DτX and construct its double D̃X by inserting the product [−1, 1]×∂DτX

between them and then collapsing [−1, 1] × C to C. The notation is due to the fact

that it is homeomorphic to a certain branched cover of the standard double DX of

X along C. D̃X contains C as its subset. The vector fields W and −W on the two

copies of DτX \C extend to a continuous vector field W̃ on D̃X \C. The local index

i(W̃ , Ci) of W̃ about Ci can be defined as an integer [2], and we define the local index

i(V,Ci) of V about Ci to be i(W̃ , Ci)/4.

Now the expanded index Ind∗
C(V ) of V with respect to the admissible decomposition

(∂τX, ∂νX; C) is defined to be the sum of the following local indices:

• the local indices of V at the interior zeros

• the tangential local indices of V at the zeros in ∂τX \ C,
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• the normal local indices of V at the zeros in ∂νX \ C,

• the local indices of V along the components Ci of C.

Theorem 5.5. Let V be a continuous tangent vector field on an even dimensional

compact smooth manifold X with only isolated zeros, and suppose that the decompo-

sition (∂τX, ∂νX; C) of ∂X is admissible for V . Then Ind∗
C(V ) = χ(X) − χ(C).

Proof. Note that the Euler charactersitic of DτX is equal to 2χ(X) − χ(∂τX) =

2(χ(X) − χ(C)). Therefore the Euler characteristic of D̃X is 4(χ(X) − χ(C)). The

Poincaré-Hopf theorem applied to W̃ will immediately produce the desired formula.
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[5] C. C. Pugh, A generalized Poincaré index formula, Topology 7 (1968), 217–226;

MR0229254 (37 #4828).

12


