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Mn : an n-dim TOP manifold,

conn. ori. closed

π = π1(M)

{surgery problems} −→ Ln(π)

(f : Nn → Mn, b) 7−→ θ(f, b)



θ(f, b) : surgery obstruction



θ(f, b) : surgery obstruction

θ(f, b) = 0

if can do surgery to get a htpy eq.
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The converse is true . . .

• if n ≥ 5

• if n = 4 and π = 1

• if n = 4 and π is good

e.g. 1, Zn, subexponential groups

[Freedman-Quinn, Krushkal-Q, . . . ]



There are other results

that depend on topology of M .

• Krushkal-Lee (2002),

π : free so probably not good

• Hegenbarth-Repovš (2006)



an example due to H-R

K ⊂ S3 : a knot

E(K) = S3 − N̊(K)

M(K) = ∂(E(K) × D2)



an example due to H-R

K ⊂ S3 : a knot

E(K) = S3 − N̊(K)

M(K) = ∂(E(K) × D2)

OK for M(K), when K is a

torus knot.



Theorem

TOP surgery obstruction theory

works for M(K) for any knot

K.



properties of E(K) and S3 − K

• homology S1’s

• aspherical

• S3 − K has a complete

non-positively curved metric.

[Leeb 1995]



properties of M(K)

• π1(M(K)) = π1(E(K))

• not aspherical



the idea of H-R

Construct a 2-dim spine B of E(K)

and a projection q : E(K) → B,

so that each q−1(x) is a wedge of

intervals along one end.



Restrict the map

E(K) × D2 proj.−−→ E(K)
q−→ B

to ∂ and get the control map

p : M(K) → B.



The point inverses of the con-

trol map p : M(K) → B are all

simply-connected.



The point inverses of the con-

trol map p : M(K) → B are all

simply-connected.

=⇒ a controlled surgery exact se-

quence for p

[Pedersen-Quinn-Ranicki (2003)]



ε > δ > 0: sufficiently small

N = {surgery problems to M(K)}/ ∼

S(M(K)) = {htpy eq.’s to M(K)}/ ∼

Sε,δ(M(K)) //

��

N // H4(B; L)

A
��

S(M(K)) // N // L4(π)



The first row is exact [P-Q-R].

Want to show the second row is also exact.

Sε,δ(M(K)) //

��

N // H4(B; L)

A
��

S(M(K)) // N // L4(π)



The first row is exact [P-Q-R].

Want to show the second row is also exact.

Sε,δ(M(K)) //

��

N // H4(B; L)

A
��

S(M(K)) // N // L4(π)

Claim: A is injective.



H4(B; L)

A
��

φ∗ // H4(S
1; L)

A
��

L4(π1(B))
φ∗ // L4(π1(S

1))

φ : B → S1: a homology equivalence



H4(B; L)

A
��

φ∗
∼=

// H4(S
1; L)

A
��

L4(π1(B))
φ∗ // L4(π1(S

1))

φ : B → S1: a homology equivalence

⇒ top row is an isomorphism



H4(B; L)

A
��

φ∗
∼=

// H4(S
1; L)

A
��

L4(π1(B))
φ∗
∼=

// L4(π1(S
1))

Bottom row is an isomorphism. [Arvinda-

Farrell-Roushon, 1997]

This uses the metric on S3 − K ' B.



H4(B; L)

A
��

φ∗
∼=

// H4(S
1; L)

A∼=
��

L4(π1(B))
φ∗
∼=

// L4(π1(S
1))

The assembly map A for S1 is an isomor-

phism. [Browder, 1966]



H4(B; L)

A
��

φ∗
∼=

// H4(S
1; L)

A∼=
��

L4(π1(B))
φ∗
∼=

// L4(π1(S
1))

The assembly map A for B is also an iso-

morphism. ⇒ exactness follows



Construction of the Spine B:

Figure Eight Knot Case



the ideal triangulation of the complement:



dual spine of an ideal 1-simplex

P



dual spine of an ideal 1-simplex

P



dual spine of an ideal 2-simplex

Q



dual spine of an ideal 2-simplex



dual spine of an ideal 3-simplex



Construction of the Spine B:

Trefoil Knot Case



have a decomposition into ideal cells.

can similarly consider the dual spine.



Construction of the Spine B: General Case

We use a simplified but weaker method of

D. Thurston to construct a decomposition

of the knot complement, and use its dual

spine as B.



Identify S3 with S2 × (−∞,∞) ∪ {±∞},

and consider a knot projection to S2 × 0,

with n crossings.
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This divides S2 × 0 into several regions.
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Pick a point from each region.
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Connect the points as indicated above.
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S2 × 0 decomposes into 4n-many quadran-

gles Ri.



Roughly speaking Ri × (−∞,∞) − K are

the desired cells.



Unfortunately their union is not S3−K, but

S3 − {±∞} − K.



So pick a point on K and dig tunnels to

±∞. This affects four cells.



This gives a decomposition into ideal cells.

Now use the dual spine.
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