Intelligence of Low Dimensional Topology 2006

Knots and 4-dimensional topological surgery

Masayuki Yamasaki
Okayama University of Science

$$
\text { July 23, } 2006
$$

$M^{n}:$ an n-dim TOP manifold,
conn. ori. closed

$$
\pi=\pi_{1}(M)
$$

M^{n} : an n-dim TOP manifold,

conn. ori. closed

$$
\pi=\pi_{1}(M)
$$

$\{$ surgery problems $\} \longrightarrow L_{n}(\pi)$

$$
\left(f: N^{n} \rightarrow M^{n}, b\right) \longmapsto \theta(f, b)
$$

$\theta(f, b)$: surgery obstruction
$\theta(f, b)$: surgery obstruction
$\theta(f, b)=0$
if can do surgery to get a htpy eq.

The converse is true ...

- if $n \geq 5$

The converse is true ...

- if $n \geq 5$
- if $n=4$ and $\pi=1$

The converse is true ...

- if $n \geq 5$
- if $n=4$ and $\pi=1$
- if $n=4$ and π is good

The converse is true ...

- if $n \geq 5$
- if $n=4$ and $\pi=1$
if $n=4$ and π is good
e.g. $1, \mathbb{Z}^{n}$, subexponential groups
[Freedman-Quinn, Krushkal-Q, ...]

There are other results that depend on topology of M.

- Krushkal-Lee (2002),
π : free so probably not good
- Hegenbarth-Repovš (2006)
an example due to $\mathrm{H}-\mathrm{R}$
$K \subset S^{3}:$ a knot
$E(K)=S^{3}-\stackrel{N}{N}(K)$
$M(K)=\partial\left(E(K) \times D^{2}\right)$
an example due to $\mathrm{H}-\mathrm{R}$
$K \subset S^{3}:$ a knot
$E(K)=S^{3}-\stackrel{N}{N}(K)$
$M(K)=\partial\left(E(K) \times D^{2}\right)$
OK for $M(K)$, when K is a torus knot.

Theorem

TOP surgery obstruction theory works for $M(K)$ for any knot K.

properties of $E(K)$ and $S^{3}-K$

homology S^{1} 's

- aspherical
- $S^{3}-K$ has a complete non-positively curved metric.
[Leeb 1995]

properties of $M(K)$

- $\pi_{1}(M(K))=\pi_{1}(E(K))$
not aspherical
the idea of $\mathrm{H}-\mathrm{R}$
Construct a 2-dim spine B of $E(K)$
and a projection $q: E(K) \rightarrow B$,
so that each $q^{-1}(x)$ is a wedge of
intervals along one end.

Restrict the map

$$
E(K) \times D^{2} \xrightarrow{\text { proj. }} E(K) \xrightarrow{q} B
$$

to ∂ and get the control map

$$
p: M(K) \rightarrow B
$$

The point inverses of the control map $p: M(K) \rightarrow B$ are all simply-connected.

The point inverses of the con-
trol map $p: M(K) \rightarrow B$ are all
simply-connected.
\Longrightarrow a controlled surgery exact se-
quence for p
[Pedersen-Quinn-Ranicki (2003)]
$\epsilon>\delta>0$: sufficiently small
$\mathcal{N}=\{$ surgery problems to $M(K)\} / \sim$
$\mathcal{S}(M(K))=\{$ htpy eq.'s to $M(K)\} / \sim$

The first row is exact $[P-Q-R]$.
Want to show the second row is also exact.

$$
\begin{gathered}
\mathcal{S}_{\epsilon, \delta}(M(K)) \longrightarrow \mathcal{N} \longrightarrow H_{4}(B ; \mathbb{L}) \\
\downarrow \\
\downarrow \\
\mathcal{S}(M(K)) \longrightarrow \mathcal{N} \longrightarrow L_{4}(\pi)
\end{gathered}
$$

The first row is exact $[P-Q-R]$.
Want to show the second row is also exact.

$$
\begin{gathered}
\mathcal{S}_{\epsilon, \delta}(M(K)) \longrightarrow \mathcal{N} \longrightarrow H_{4}(B ; \mathbb{L}) \\
\downarrow \\
\downarrow \\
\mathcal{S}(M(K)) \longrightarrow \mathcal{N} \longrightarrow L_{4}(\pi)
\end{gathered}
$$

Claim: A is injective.

$$
\begin{gathered}
H_{4}(B ; \mathbb{L}) \xrightarrow{\phi_{*}} H_{4}\left(S^{1} ; \mathbb{L}\right) \\
A \downarrow \\
L_{4}\left(\pi_{1}(B)\right) \xrightarrow{\phi_{*}} L_{4}\left(\pi_{1}\left(S^{1}\right)\right)
\end{gathered}
$$

$\phi: B \rightarrow S^{1}:$ a homology equivalence

$$
\begin{gathered}
H_{4}(B ; \mathbb{L}) \xrightarrow{\phi_{*}} H_{4}\left(S^{1} ; \mathbb{L}\right) \\
A \downarrow \\
L_{4}\left(\pi_{1}(B)\right) \xrightarrow{\phi_{*}} L_{4}\left(\pi_{1}\left(S^{1}\right)\right)
\end{gathered}
$$

$\phi: B \rightarrow S^{1}:$ a homology equivalence
\Rightarrow top row is an isomorphism

$$
\begin{gathered}
H_{4}(B ; \mathbb{L}) \xrightarrow{\phi_{*}} H_{4}\left(S^{1} ; \mathbb{L}\right) \\
A \downarrow \\
L_{4}\left(\pi_{1}(B)\right) \xrightarrow{\cong} \xrightarrow{\phi_{*}} \underset{4}{\cong} L_{4}\left(\pi_{1}\left(S^{1}\right)\right)
\end{gathered}
$$

Bottom row is an isomorphism. [Arvinda-Farrell-Roushon, 1997]

This uses the metric on $S^{3}-K \simeq B$.

$$
\begin{gathered}
H_{4}(B ; \mathbb{L}) \xrightarrow{\phi_{*}} H_{4}\left(S^{1} ; \mathbb{L}\right) \\
A \downarrow \\
\curvearrowleft \\
L_{4}\left(\pi_{1}(B)\right) \xrightarrow{\cong} \xrightarrow{\phi_{*}} L_{4}\left(\pi_{1}\left(S^{1}\right)\right)
\end{gathered}
$$

The assembly map A for S^{1} is an isomor-
phism. [Browder, 1966]

$$
\begin{aligned}
& H_{4}(B ; \mathbb{L}) \xrightarrow{\phi_{*}} H_{4}\left(S^{1} ; \mathbb{L}\right)
\end{aligned}
$$

The assembly map A for B is also an isomorphism. \Rightarrow exactness follows

Construction of the Spine B :

Figure Eight Knot Case

the ideal triangulation of the complement:

dual spine of an ideal 1-simplex

dual spine of an ideal 1-simplex

dual spine of an ideal 2-simplex

dual spine of an ideal 2-simplex

dual spine of an ideal 3-simplex

Construction of the Spine B :

Trefoil Knot Case

have a decomposition into ideal cells.

can similarly consider the dual spine.

Construction of the Spine B: General Case

We use a simplified but weaker method of
D. Thurston to construct a decomposition
of the knot complement, and use its dual
spine as B.

Identify S^{3} with $S^{2} \times(-\infty, \infty) \cup\{ \pm \infty\}$, and consider a knot projection to $S^{2} \times 0$, with n crossings.

This divides $S^{2} \times 0$ into several regions.

Pick a point from each region.

Connect the points as indicated above.

$S^{2} \times 0$ decomposes into $4 n$-many quadrangles R_{i}.

Roughly speaking $R_{i} \times(-\infty, \infty)-K$ are
the desired cells.

Unfortunately their union is not $S^{3}-K$, but
$S^{3}-\{ \pm \infty\}-K$.

So pick a point on K and dig tunnels to $\pm \infty$. This affects four cells.

This gives a decomposition into ideal cells.
Now use the dual spine.
[Arvinda-Farrell-Roushon] Surgery groups of knot and link complements, Bull. London Math. Soc. 29 (1997), 400-406
[Browder] Manifolds with $\pi_{1}=\mathbb{Z}$, Bull. Amer. Math.
Soc. 72 (1966) $238-244$
[Freedman-Quinn] Topology of 4-manifolds, Princeton
Univ. Press (1990)
[Hegenbarth-Repovš] Applications of controlled surgery in dimension 4: Examples, preprint.
[Krushukal-Quinn] Subexponential groups in 4-manifold topology, Geom. Topol. 4 (2000), $407-430$
[Krushukal-Lee] Surgery on closed 4-manifolds with free
fundamental group, Math. Proc. Cambridge Philos.
Soc. 133 (2002), no.2, $305-310$
[Leeb] 3-manifolds with(out) metrics of nonpositive curvature, Invent. Math. 122(1995), 277 - 289
[Pedersen-Quinn-Ranicki] Controlled surgery with trivial local fundamental groups, High dimensional manifold topology, Proceedings of the conference, ICTP, Trieste

Italy, World Scientific (2003) 421-426

