Intelligence of Low Dimensional Topology 2006

Knots and 4-dimensional topological surgery

Masayuki Yamasaki

Okayama University of Science

July 23, 2006

M^n : an *n*-dim TOP manifold,

conn. ori. closed

 $\pi = \pi_1(M)$

M^n : an *n*-dim TOP manifold,

conn. ori. closed

$$\pi = \pi_1(M)$$

{surgery problems} $\longrightarrow L_n(\pi)$

$$(f: N^n \to M^n, b) \longmapsto \theta(f, b)$$

$\theta(f,b)$: surgery obstruction

$\theta(f, b)$: surgery obstruction

$\theta(f,b) = 0$

if can do surgery to get a htpy eq.

• if $n \geq 5$

• if $n \geq 5$

• if n = 4 and $\pi = 1$

• if n > 5

• if n = 4 and $\pi = 1$

• if n = 4 and π is good

• if n > 5

• if n = 4 and $\pi = 1$

• if n = 4 and π is good

e.g. 1, \mathbb{Z}^n , subexponential groups

[Freedman-Quinn, Krushkal-Q, ...]

There are other results

that depend on topology of $\boldsymbol{M}.$

- Krushkal-Lee (2002),
 - π : free so probably not good
- Hegenbarth-Repovš (2006)

an example due to $\ensuremath{\mathsf{H}}\xspace-\ensuremath{\mathsf{R}}\xspace$

$$K \subset S^3$$
 : a knot
 $E(K) = S^3 - \mathring{N}(K)$
 $M(K) = \partial(E(K) \times D^2)$

an example due to $\ensuremath{\mathsf{H}}\xspace-\ensuremath{\mathsf{R}}\xspace$

$$K \subset S^3$$
: a knot
 $E(K) = S^3 - \mathring{N}(K)$
 $M(K) = \partial(E(K) \times D^2)$
OK for $M(K)$, when K is a
torus knot.

TOP surgery obstruction theory works for ${\cal M}(K)$ for any knot

properties of E(K) and $S^3 - K$

- $\bullet \ {\rm homology} \ S^1{\rm 's}$
- aspherical
- $S^3 K$ has a complete

non-positively curved metric.

[Leeb 1995]

properties of M(K)

• $\pi_1(M(K)) = \pi_1(E(K))$

not aspherical

Construct a 2-dim spine B of E(K)and a projection $q : E(K) \rightarrow B$, so that each $q^{-1}(x)$ is a wedge of intervals along one end.

Restrict the map

 $E(K) \times D^2 \xrightarrow{\text{proj.}} E(K) \xrightarrow{q} B$

to ∂ and get the control map

$$p: M(K) \to B$$

The point inverses of the con-

trol map $p : M(K) \rightarrow B$ are all

simply-connected.

The point inverses of the con-

trol map $p : M(K) \rightarrow B$ are all

simply-connected.

\implies a <u>controlled</u> surgery exact se-

quence for \boldsymbol{p}

[Pedersen-Quinn-Ranicki (2003)]

$\epsilon > \delta > 0$: sufficiently small

$$\mathcal{N} = \{ \text{surgery problems to } M(K) \} / \sim$$

$$\mathcal{S}(M(K)) = \{ \mathsf{htpy eq.'s to } M(K) \} / \sim$$

The first row is exact [P-Q-R].

Want to show the second row is also exact.

The first row is exact [P-Q-R].

Want to show the second row is also exact.

Claim: A is injective.

 $\phi: B \to S^1$: a homology equivalence

$\phi: B \to S^1$: a homology equivalence

 \Rightarrow top row is an isomorphism

Bottom row is an isomorphism. [Arvinda-

Farrell-Roushon, 1997]

This uses the metric on $S^3 - K \simeq B$.

The assembly map A for S^1 is an isomorphism. [Browder, 1966]

The assembly map A for B is also an isomorphism. \Rightarrow exactness follows

Construction of the Spine B:

Figure Eight Knot Case

the ideal triangulation of the complement:

dual spine of an ideal 1-simplex

dual spine of an ideal 1-simplex

dual spine of an ideal 2-simplex

dual spine of an ideal 2-simplex

dual spine of an ideal 3-simplex

Construction of the Spine B:

Trefoil Knot Case

have a decomposition into ideal cells.

can similarly consider the dual spine.

We use a simplified but weaker method of

D. Thurston to construct a decomposition

of the knot complement, and use its dual

spine as B.

Identify S^3 with $S^2 \times (-\infty, \infty) \cup \{\pm \infty\}$,

and consider a knot projection to $S^2 \times 0$,

with n crossings.

This divides $S^2 \times 0$ into several regions.

Pick a point from each region.

Connect the points as indicated above.

 $S^2 \times 0$ decomposes into 4n-many quadran-

gles R_i .

Roughly speaking $R_i \times (-\infty, \infty) - K$ are

the desired cells.

Unfortunately their union is not $S^3 - K$, but

 $S^3 - \{\pm \infty\} - K.$

So pick a point on \boldsymbol{K} and dig tunnels to

 $\pm\infty$. This affects four cells.

This gives a decomposition into ideal cells.

Now use the dual spine.

[Arvinda-Farrell-Roushon] Surgery groups of knot and link complements, Bull. London Math. Soc. **29** (1997), 400 – 406

[Browder] Manifolds with $\pi_1 = \mathbb{Z}$, Bull. Amer. Math.

Soc. **72** (1966) 238 – 244

[Freedman-Quinn] Topology of 4-manifolds, Princeton

Univ. Press (1990)

[Hegenbarth-Repovš] Applications of controlled surgery

in dimension 4: Examples, preprint.

[Krushukal-Quinn] Subexponential groups in 4-manifold

topology, Geom. Topol. 4 (2000), 407 – 430

[Krushukal-Lee] Surgery on closed 4-manifolds with free

fundamental group, Math. Proc. Cambridge Philos.

Soc. **133** (2002), no.2, 305 - 310

[Leeb] 3-manifolds with(out) metrics of nonpositive cur-

vature, Invent. Math. 122(1995), 277 – 289

[Pedersen-Quinn-Ranicki] Controlled surgery with trivial

local fundamental groups, High dimensional manifold

topology, Proceedings of the conference, ICTP, Trieste

Italy, World Scientific (2003) 421 – 426