1. CONTROLLED HOMOTOPY EQUIVALENCES

We first introduce basic concepts in controlled homotopy theory, and state several
elementary facts on them. These are analogues of the standard non-controlled
theory. We introduce metric control into the notion of homotopy and homotopy
equivalence. We basically follow [4].

Definition. Let X be a metric space. A homotopy h : K x [0,1] — X has diameter
< 4, if the image of the path h(z,—) : [0,1] — X has diameter < ¢ for every x € K.

Convention. When h : A x [0,1] — B is a homotopy, h; : A — A will denote the
map defined by h;(a) = h(a,t).

Definition. Fix a “control map” p: K — X from a space K to a metric space X,
and let § be a non-negative number. Take a topological space M (and its subset
S). Two maps f, g : M — K are called d-close if d(p o f(z),po g(z)) < ¢ for
every x € M. A homotopy H : M x [0,1] — K (rel ) is called a d-homotopy (rel
S) if the homotopy p o H has diameter < . When we need to specify the control
map, we call it a p~1(d)-homotopy. A map f : M — K (between spaces with
common subsets 5) is said to be a §-homotopy equivalence (rel S) if there exists a
map g : K — M together with a (po f)~1(d)-homotopy (rel S)

h:Mx[0,1] > M:gf ~1y
and a p~1(8)-homotopy (rel S)
E:Kx[0,1] > K:gf ~1k .
When we want to specify the control map, we call it a p~1(8)-homotopy equivalence.

Proposition 1.1. Suppose [ : K/ — K and g : K — K’ are maps such that
fog: K — K is p~t(e)-homotopic to the identity. If hy : R — K is a p~*()-
homotopy, then gohy : R — K' is a (po f)~1(6 + 2¢)-homotopy.

Proof. Pick a point z € R, then {po f o go h(z)|[t € [0,1]} is in the closed €
neighborhood of {p o hy(z)|t € [0,1]}, and hence has diameter < § + 2e. O

Proposition 1.2. Suppose f' : K' — K is a p~(€')-homotopy equivalence (rel S)
" K" — K'is a (pof)~t(¢")-homotopy equivalence (rel S). Then f'o f" : K" —
K is a p~Y(¢ + €")-homotopy equivalence (rel S).

Proof. Easy to check. O

As in the standard case, the problem on maps can be converted into the problem
on inclusion maps by replacing the target space with the mapping cylinder. The
notion of n-connectedness of a pair is important especially when we are dealing
with CW complexes. See [8] or [2] for basics on (relative) CW complexes. We use
the notation e” for an open r-cell, and " for a closed r-cell. When (K, L) is a
relative CW complex, K, will denote its r-skeleton, i.e. the union of L and the
cells of dimension < r.

Definition. Let p : K — X be a control map, L be a subset of K, and n be a
non-negative integer. When every map f : (R, S) — (K, L) from an n-dimensional
relative CW complex to (K, L) is é-homotopic rel S to a map into L, the pair
(K, L) is said to be (§,n)-connected, or (p~1(8),n)-connected if we need to specify
the control map. A pair (K, L) is said to be (6, 1.5)-connected if it is (J, 1)-connected
and, for each map f : (R,S) — (K, L) from a 2-dimensional relative CW complex,
there exists a map f' : (R,S) — (K, L) such that f/|S = f|S and f’ and f are
d-close with respect to p.
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Note that we are using a different terminology from that used in [4].

A (4, 2)-connected pair is (d, 1.5)-connected, and a (4, 1.5)-connected pair is (J, 1)-
connected. The (4, 1.5)-connectedness is a controlled analog of the condition that
the inclusion map induces an isomorphism on the fundamental groups.

The (4, n)-connectivity is preserved by e-homotopy equivalences in the following
manner.

Proposition 1.3. If f: (K',L) — (K, L) is a p~'(¢)-homotopy equivalence rel L
and (K, L) is (p~1(8),n)-connected, then (K', L) is ((po f)~1(5+ 3€), n)-connected.

Proof. Let r : (R,S) — (K’,L) be a map from a relative n-complex. Then there
exists a p~1(d)-homotopy h¢ : R — K rel S such that hg = f or and hy(R) C L.
Now gohy : R — K’ is a (po f)~1(6 + 2¢)-homotopy such that go hg = go for
and g o hy(S) C L. Since there is a (p o f)~!(e)-homotopy between r and go for,
ris (po f)~1(d + 3€)-homotopic to g o hy. O

Proposition 1.4 (Controlled Whitehead theorem). Letn > 1 be an integer. There
exists a k > 1 depending on n so that if

(1) X is a metric space, and
(2) (K, L) is a (§,n)-connected n-dimensional relative CW complex with cells
of diameter < § with respect to a control map p: K — X,

then the inclusion map L — K is a kd-homotopy equivalence.

Proof. For each r = 0,1,--- ,n, we inductively construct a constant ¢, > 0 and a
dr-homotopy H : K, x [0,1] — K rel L such that

H():]. and Hl(KT)CL.

For each 0-cell v of (K, L), there exists a path p, in K from v to a point in L whose
image in X has diameter < §. These paths define a §-homotopy H : Ky x[0,1] — K
rel L such that H(Ky) C L, and so dg = ¢ works.

Assume inductively that we have defined é,_; and a §,_1-homotopy H : K, _1 x
[0,1] — K rel L as above. Take an r-cell " and let 6 : D™ — K, be its characteristic
map. Let us construct a constant ¢, > 0 and a é,-homotopy G : D™ x [0,1] — K
such that

Gi|S"™ ' =H;00|S"', Go=6, and G(D")CL.

Let ¢ : D" x [0,1] — D" x [0,1] be a homeomorphism so that (D" x {0}) =
D" x {0} U S™1 x [0,1], and define a map f : (D" x {0},5"! x {0}) — (K, L) by
f=Ho(fx1)op/D" x{0}.

The diameter of the image p(f (D" x{0})) is < §+2§,_1. By the (4, n)-connectivity
hypothesis, there exists a d-homotopy F : D" x [0,1] — K of f such that

F(S™ ' x[0,1]uD" x{1}) C L.

If we set 0, = 30 + 24,1, then the image p(F (D" x [0, 1])) has diameter < §,, and
F o~ is the desired §,-homotopy G. G’s for the r-cells of (K, L) together induce
a 0r,-homotopy H : K, x [0,1] — K rel L.

By induction we can conclude that there is a é,-deformation H : K x [0,1] — K

rel L to L; in particular, the inclusion map L — K is a d,-homotopy equivalence.
Thus kK =4 - 2" — 3 works. U

Proposition 1.5 (Geometric connectivity for relative CW complexes). Let 0 < n
be an integer. There exists a k > 1 depending on n so that if

(1) X is a metric space,

(2) r is an integer such that 0 <r <n, and
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(3) (K,L) is a (6, r)-connected n-dimensional relative CW complex with cells
of diameter < § with respect to a control map p: K — X,

then there ezists a max{n,r + 2}-dimensional relative CW complex (X', L) with no
cells of dimension < r together with a kd-homotopy equivalence K' — K rel L.

Proof. We first eliminate the 0-cells. We add several cells of dimension < 2 to K to
produce another max{n, 2}-dimensional complex which is 0-homotopy equivalent
rel L to K. For each 0-cell v in K — L, there exists a path p, in K from v to a point
in L whose image in X has diameter < . Homotop such p, off the interiors of the
cells of dimension > 2. Now its image in X has diameter < 2nd. We may assume
that each p, is a sequence of consecutive non-loop 1-cells from v to a point in L
and that p, does not pass through the same 0-cell more than once. The paths {p,}
may have non-trivial intersections in K — L. Pick a 0-cell v and suppose there are
m paths p1, ..., pn passing through v among them in addition to the path py = p,
starting from v.

Let e be a 1-cell of K connecting v and another 0-cell " which appears in the path p;,
and let 6 : [—1,1] — K be the characteristic map for e with (—1) = v" and §(1) = v.
Let A; and Aj be the subsets of [—1,1] x[—1, 1] defined by Ay = {(¢,u)|t = u} = D!
and Ay = {(t,u)[t < u} = D% In K x[0,m], add to K new O-cells (v,1), ..., (v,m),
new 1-cells vx [0,1], ..., vx[m—1,m] and more new 1-cells of the form (0 x1)(A;),
and new 2m 2-cells of the form (6 x 1)(As3) to obtain a new n-dimensional relative
complex (K’, L). We can now replace the path p; by a new path passing through
(v, 1) instead of v for each i = 1,--- ,m so that v is no longer an intersection point
of the paths. The projection K x [0,1] — K restricts to a map K’ — K, which is
obviously a 0-homotopy equivalence rel L with respect to p. Compose this with p
to obtain a control map for K’. By continuing this for the other 0-cells in K — L,
we obtain an n-dimensional complex K which is 0-homotopy equivalent rel L to
the original K. The paths p,’s do not have intersection in K- L, and their images
have diameter < 2nd. Each 0-cell of (K , L) is contained in exactly one of the paths
Pu’s.

Now we shrink each path p, to a point to obtain a new complex (K(l), L) with no
O-cells. Actually there is a strong deformation retraction H : (LUP)x[0,1] — LUP
to L of diameter < 2nd, where P denotes the union of the paths p,’s. This extends
to a homotopy H : K x [0,1] — K rel L because of the NDR-property of L U P in
K. In order to estimate the diameter of the homotopy, we describe the construction
explicitly. Suppose H has been extended to Ki,l x [0,1] — K. For each i-cell e of
(k, L) with characteristic map 6 : D* — K, define a homotopy G : D x [0,1] — K
by

xz 2—t .
ety = L COGED) 2= ) 1 llal > 1 =272,
b(*3*) if lzf| <1—¢/2.



4

This induces an extension of H over e x [0, 1], and the induction step proceeds, and
defines a 3nd-homotopy H : K x [0,1] — K rel L. Also note that H induces a
homotopy H' : KM x [0,1] — KM, Let g : K — K1 denote the quotient map.
Define a map f® : KU — K as follows:

. 1 _A
f(l)(x){Hl(x) ?fxeK()—L—K—P,
T ifzel.

Then fM) ogM) = Hy ~ 14 rel L, and gM o fO) = H{ ~ 1,4y rel L. So fO :
K® — K is a 3né-homotopy equivalence rel L. Define p™) : KO — X by po f(1).
The cells of (K, L) have diameter < (6n+1)d, and (K™, L) is (9n+1)J-connected
with respect to p().
Let k < r + 1 and suppose inductively that we have constructed constants x(?)

(i =1,...,k) and homotopy equivalences f* : (K L) — (K=Y L) rel L such
that

(1) (K@ L) has only cells of of dimension 4, i + 1, ..., max{n + 1, + 1},

(2) (K@, L) has only cells of diameter < (9§ with respect to p{*) = po f(1) o

f(2) o...of(i),

(3) (K™, L) is (k6,r)-connected with respect to p(*), and

(4) f@ is a k() §-homotopy equivalence with respect to p* and p(i—1.
We eliminate k-cells of (K(*) L) (and at the same time introduce new (k + 2)-
cells) by a method called “cell-trading” ([2], p.25). Let {e? } be the k-cells and let
0; : (D¥,S%=1) — (K® L) be the characteristic map for el and set 0/ = kRS,
then by assumption there is a ¢’-homotopy h; : D* x [0,1] — K®) rel L from 0;
to a map into L. Use a cellular approximation to replace h; by a (2n — 2k + 1)¢'-
homotopy h; : D*x[0,1] — K,Elfgl Consider a (k+2)-ball D*2. Its boundary is the
union of two (k + 1)-balls B U By. Fix an identification of By with D* x [0, 1], and
hence an identification of B; = 0By with d(D* x [0,1]). Attach new (k + 1)-cells
{ef“} to K®) using the map

h;|0(D* x [0,1]) : 8By — KM

to define a new complex K*) and then attach new (k 4 2)-cells {e?+2} to K(*)
using the map

hjU132 : aDk+2:BlLJB2—>K]ng_)17

to obtain a complex K® _ Since K® is obtained from K®) by simultaneous
elementary expansions, the collapsing map K® — K& g a 0-homotopy equiv-
alence, and (K™ L) is (&', 7)-connected. The diameter of added cells of K*) is
< (4n—4k+3)d’ Note that the subcomplex (K,E,k) uy; e?“, L) deforms into L fixing
L by a (4n — 4k + 3)6’-homotopy, and that the homotopy extends to a ¢”’-homotopy
of K®) where 6" = (14 2(4n — 4k + 3)(n + 1 — k))&’. Now define K*+1 to be
the space obtained from shrinking each of the added closed (k + 1)-cells of K® to
a point, then K**+1) has no cells of dimension < k, and there is a §”’-homotopy
equivalence f(F+1) : K+ _ K(®)  The pair (K*+Y, L) is (6’ 436", r)-connected,
SO
D = (4 4 6(4n — 4k + 3)(n+ 1 — k)P

works. This complets the inductive step and the proof is finished. O
The proof above is an adaptation of Quinn’s proof of the geometric connectivity

theorem for handlebodies [4] to the CW complex case. The following is a special
case of it:
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Theorem 1.6 (Quinn). Let n > 5 be an integer. There exists a k > 1 depending
on n so that if

(1) X is a metric space,

(2) 7 is an integer such that 0 <r <mn —4, and

(3) p: (N,OoN) — X is a (0,7)-connected n-dimensional compact manifold

with a handlebody structure of diameter < ¢,

then (N,0oN) has a handlebody structure of diameter < k§ with no handles of
dimension < r.

2. GEOMETRIC CHAIN COMPLEXES

In this section, we first review the theory of geometric chain complexes associated
with transverse relative CW complexes developed by Quinn [6], and then study a
Hurewicz-type criterion for (4, n)-connectivity. We use the Z-coefficients.

First let K be any space. Consider amap S : [S| — K from a set |S|. We identify
S with its graph in |S| x K. The two components of an element s € S C |S| x K
will be denoted |s| € |S| and [s](= S(|s|)) € K, respectively. The free Z-module on
S is called the geometric Z-module on K generated by S, and is denoted Z[S]. It
is finitely generated if |S| is a finite set. If Z[S] and Z[T] are geometric modules on
K, a geometric morphism f : Z[S] — Z[T] is a Z-coefficient linear combination of
‘paths’ (s, p,t) from s € S tot € T, where p : [0,7] — K is a Moore path such that
its initial point p(0) is [s] and its terminal point p(7) is [t]. The composite g o f of
consecutive geometric morphisms

f= Zm,\(sA,p,\,t,\) (Z[S|—-Z|T), g= Z”v(t;vawuv) : Z|T) — Z]U)
AEA ~yel

is defined to be
Z n’ym)\(s)\va"‘/p)\vu’y)'
AEAyET ta=t!,
We are using the Moore composition of paths here. Two paths (s, p : [0,7],¢) and
(s',p :[0,7'],¢') are homotopic if s = s, t = t/, and there exists a homotopy from
p to p’ through Moore paths. A homotopy (=) of a geometric morphism is a finite
sequence of the following two operations:

e homotopies of the paths,
e combining two terms m(s, p, t)+n(s, p, t) into (m-+n)(s, p, t), and its inverse.

Definition. A (geometric Z-module) chain complex on K is a sequence of maps of
geometric modules on K

(Cyd) : - — r+1dTL>Crd—T>CT—1—>~“
such that d, od,41 ~ 0.

Let us recall the construction of the geometric cellular chain complex C, (K, L)
of a relative CW complex (K, L) from [6]. Let us assume that (K, L) is transverse
in the following sense. As in the previous section, K will denote the k-skeleton of
(K, L).

Definition. A map f : (M* M) — (Kj, Ki_1) from a smooth k-dimensional
manifold (possibly with boundary) is said to be transverse to the k-cells if for
each open k-cell e¥ of (K,L), f~!(e*) is the union of the interiors of a finitely
many disjoint closed k-balls BX in M such that there exists a homeomorphism
Yo : BF — DF to the k-ball D¥ with 6 o1, = f|B¥ for each «, where 6 : D* — K
denotes the characteristic map for the k-cell e*. A relative CW complex (K, L) is
transverse if the attaching maps 6 : S* — K} of the (k + 1)-cells are all transverse
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to the k-cells for every k. Any continuous map f : (M*,OM) — (K, K1) is
homotopic rel 0 to one that is transverse to the k-cells, and any finite relative CW
complex is simple homotopy equivalent to a transverse relative CW complex.

Suppose (K, L) is transverse. The geometric celluar chain group Ci(K, L) is
defined to be the free abelian group generated by the set S = {ef } of the k-cells
of (K, L) together with the map Sy — K sending each k-cell ef to the image
9;?(0) of the origin O of the k-ball D by the characteristic map 9;? :DF - K
for e?. Let ™ be a (k + 1)-cell of (K, L) and eé? be a k-cell of (K,L). Let
OF 1 . DM K and 9;? : D* — K be the characteristic maps for e¥** and e;?.
By assumption, the restriction § = 0¥ S* : (S () — (Kj, Ki_1) is transverse to
the k-cells, and the inverse image 6~!(e*) is the union of the interiors of a finitely
many disjoint closed k-balls { B%7} and there are homeomorphisms %7 : BLd — Dk
such that 0% o yi7 = OFT|BiJ. Let p, be a line segment (viewed as a path
of constant speed 1) connecting the center O of D**! and the inverse image of
the center O of D* by %7, Now we need to fix our convention on orientaions of
manifolds. We give the standard orientations [D**1] and [D*] to D¥*1 and D*, and
give the orientation [S*] to S* so that [the unit outward normal vector] x [S*] =
[DF*+1]. We give the orientation induced from that of S* to B%J. The sign of a
homeomorphism g : Ny — Ny of oriented manifolds is defined to be +1 or —1
according as g is orientsation preserving or not, and is denoted sign(g). Now let
d*’ be the geometric morphism from Cxy1(K, L) to Cy(K, L) defined by the sum
S, sign(¢h)0F 1t o p,. The boundary map dii1 : Cry1(K,L) — Ci(K, L) is
defined by the sum >, ; dJ. A transversality argument with respect to (k — 1)-
cells applied to 65| : §% — Int Uj.a B&? — Kj—1 shows that d o d is homotopic to
0.

(9

O Pa Y 0
Dk+l eececceh B Dk

A geometric morphism f : S — T between geometric modules on a space K is
said to have radius < € with respect to a control map p: K — X if, for each path
p:[0,7] — K with non-zero coefficient in f, the image of po p in X is contained in
the intersection of the closed e-neighborhoods of pop(0) and pop(7). This definition
extends to geometric module chain complexes, chain maps, chain homotopies, chain
contractions, and so on in an obvious manner. See [7], for example. If all the cells
of (K, L) have diameter < § with respect to p : X — X, then C,(K, L) is a chain
complex of radius < 4.

The following proposition illustrates a typical use of geometric morphisms in the
theory of controlled topology.



Proposition 2.1. Letn be an integer > 2, M be a connected and simply-connected
oriented n-dimensional manifold with a possibly empty boundary OM, and (K, L)
be an n-dimensional relative CW complex whose n-cells have diameter < § with
respect to a control map p : K — X. Choose a basepoint xo of M. If a map
fi(M,0M) — (K, K,,_1) is transverse to all the n-cells of (K, L) and the image
f(M) has diameter < § and meeets only finitely many n-cells of (K, L), then f
has an associated geometric morphism o(f) : Z[{f(x0)}] — Cn(K, L) of radius < §
well-defined up to homotopy of radius < 0 such that if o(f) is 6-homotopic to 0
then f is 30-homotopic rel O to a map into K, _1.

Proof. The geometric morphism o(f) is defined as follows. Let e? be the open
n-cells of (K, L), and let #; : D" — K be the characteristic map for e?. Since f is
transverse to the n-cells of (K, L), there are finitely many closed n-balls B?, and
homeomorphisms ;o : B}, — D" such that 6; 0 ¢, = f|B}, and f~'(e}) is
the union (J, BY,. For each B, connect o and w;i(O) by a path p; o in M.
Now o(f) is defined to be the sum Zjﬂ sign(v;,a)f © pj.o. The only ambiguity is
the choice of the paths, and these paths are unique up to homotopy, since M is
simply-connected.
Now suppose o(f) is modified by a homotopy of f o p; .
O

Proposition 2.2 (Controlled Hurewicz Theorem). Let n > 1 be an integer. There
exists a kK > 1 depending on n so that if

(1) X is a metric space,
(2) r is an integer such that 0 < r <mn,
(3) (K, L) is a (6,1.5)-connected relative n-dimensional CW complex with cells
of diameter < § with respect to a control map p: K — X, and
(4) there are geometric morphisms si : Cx (K, L) — Cry1(K, L) of radius < ¢
(k=0,...,r) such that di415K + Sk—1dx ~25 1,
then (K, L) is (K, r)-connected.

Proof. O
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