
1. Controlled Homotopy Equivalences

We first introduce basic concepts in controlled homotopy theory, and state several
elementary facts on them. These are analogues of the standard non-controlled
theory. We introduce metric control into the notion of homotopy and homotopy
equivalence. We basically follow [4].

Definition. Let X be a metric space. A homotopy h : K× [0, 1] → X has diameter
≤ δ, if the image of the path h(x, –) : [0, 1] → X has diameter ≤ δ for every x ∈ K.

Convention. When h : A× [0, 1] → B is a homotopy, ht : A → A will denote the
map defined by ht(a) = h(a, t).

Definition. Fix a “control map” p : K → X from a space K to a metric space X,
and let δ be a non-negative number. Take a topological space M (and its subset
S). Two maps f , g : M → K are called δ-close if d(p ◦ f(x), p ◦ g(x)) ≤ δ for
every x ∈ M . A homotopy H : M × [0, 1] → K (rel S) is called a δ-homotopy (rel
S) if the homotopy p ◦H has diameter ≤ δ. When we need to specify the control
map, we call it a p−1(δ)-homotopy. A map f : M → K (between spaces with
common subsets S) is said to be a δ-homotopy equivalence (rel S) if there exists a
map g : K → M together with a (p ◦ f)−1(δ)-homotopy (rel S)

h : M × [0, 1] → M : gf ' 1M

and a p−1(δ)-homotopy (rel S)

k : K × [0, 1] → K : gf ' 1K .

When we want to specify the control map, we call it a p−1(δ)-homotopy equivalence.

Proposition 1.1. Suppose f : K ′ → K and g : K → K ′ are maps such that
f ◦ g : K → K is p−1(ε)-homotopic to the identity. If ht : R → K is a p−1(δ)-
homotopy, then g ◦ ht : R → K ′ is a (p ◦ f)−1(δ + 2ε)-homotopy.

Proof. Pick a point x ∈ R, then {p ◦ f ◦ g ◦ ht(x)|t ∈ [0, 1]} is in the closed ε
neighborhood of {p ◦ ht(x)|t ∈ [0, 1]}, and hence has diameter ≤ δ + 2ε. ¤

Proposition 1.2. Suppose f ′ : K ′ → K is a p−1(ε′)-homotopy equivalence (rel S)
f ′′ : K ′′ → K ′ is a (p◦f)−1(ε′′)-homotopy equivalence (rel S). Then f ′ ◦f ′′ : K ′′ →
K is a p−1(ε′ + ε′′)-homotopy equivalence (rel S).

Proof. Easy to check. ¤

As in the standard case, the problem on maps can be converted into the problem
on inclusion maps by replacing the target space with the mapping cylinder. The
notion of n-connectedness of a pair is important especially when we are dealing
with CW complexes. See [8] or [2] for basics on (relative) CW complexes. We use
the notation er for an open r-cell, and ēr for a closed r-cell. When (K, L) is a
relative CW complex, Kr will denote its r-skeleton, i.e. the union of L and the
cells of dimension ≤ r.

Definition. Let p : K → X be a control map, L be a subset of K, and n be a
non-negative integer. When every map f : (R, S) → (K, L) from an n-dimensional
relative CW complex to (K,L) is δ-homotopic rel S to a map into L, the pair
(K,L) is said to be (δ, n)-connected, or (p−1(δ), n)-connected if we need to specify
the control map. A pair (K, L) is said to be (δ, 1.5)-connected if it is (δ, 1)-connected
and, for each map f : (R,S) → (K,L) from a 2-dimensional relative CW complex,
there exists a map f ′ : (R, S) → (K, L) such that f ′|S = f |S and f ′ and f are
δ-close with respect to p.
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Note that we are using a different terminology from that used in [4].
A (δ, 2)-connected pair is (δ, 1.5)-connected, and a (δ, 1.5)-connected pair is (δ, 1)-

connected. The (δ, 1.5)-connectedness is a controlled analog of the condition that
the inclusion map induces an isomorphism on the fundamental groups.

The (δ, n)-connectivity is preserved by ε-homotopy equivalences in the following
manner.

Proposition 1.3. If f : (K ′, L) → (K, L) is a p−1(ε)-homotopy equivalence rel L
and (K, L) is (p−1(δ), n)-connected, then (K ′, L) is ((p◦f)−1(δ+3ε), n)-connected.

Proof. Let r : (R, S) → (K ′, L) be a map from a relative n-complex. Then there
exists a p−1(δ)-homotopy ht : R → K rel S such that h0 = f ◦ r and h1(R) ⊂ L.
Now g ◦ ht : R → K ′ is a (p ◦ f)−1(δ + 2ε)-homotopy such that g ◦ h0 = g ◦ f ◦ r
and g ◦ h1(S) ⊂ L. Since there is a (p ◦ f)−1(ε)-homotopy between r and g ◦ f ◦ r,
r is (p ◦ f)−1(δ + 3ε)-homotopic to g ◦ h1. ¤

Proposition 1.4 (Controlled Whitehead theorem). Let n ≥ 1 be an integer. There
exists a κ > 1 depending on n so that if

(1) X is a metric space, and
(2) (K, L) is a (δ, n)-connected n-dimensional relative CW complex with cells

of diameter ≤ δ with respect to a control map p : K → X,
then the inclusion map L → K is a κδ-homotopy equivalence.

Proof. For each r = 0, 1, · · · , n, we inductively construct a constant δr > 0 and a
δr-homotopy H : Kr × [0, 1] → K rel L such that

H0 = 1 and H1(Kr) ⊂ L .

For each 0-cell v of (K,L), there exists a path ρv in K from v to a point in L whose
image in X has diameter ≤ δ. These paths define a δ-homotopy H : K0×[0, 1] → K
rel L such that H(K0) ⊂ L, and so δ0 = δ works.

Assume inductively that we have defined δr−1 and a δr−1-homotopy H : Kr−1×
[0, 1] → K rel L as above. Take an r-cell er and let θ : Dr → Kr be its characteristic
map. Let us construct a constant δr > 0 and a δr-homotopy G : Dn × [0, 1] → K
such that

Gt|Sr−1 = Ht ◦ θ|Sr−1 , G0 = θ , and G1(Dr) ⊂ L .

Let ϕ : Dr × [0, 1] → Dr × [0, 1] be a homeomorphism so that ϕ(Dr × {0}) =
Dr × {0} ∪ Sr−1 × [0, 1], and define a map f : (Dr × {0}, Sr−1 × {0}) → (K, L) by

f = H ◦ (θ × 1) ◦ ϕ|Dr × {0} .

The diameter of the image p(f(Dr×{0})) is ≤ δ+2δr−1. By the (δ, n)-connectivity
hypothesis, there exists a δ-homotopy F : Dr × [0, 1] → K of f such that

F (Sr−1 × [0, 1] ∪Dr × {1}) ⊂ L .

If we set δr = 3δ + 2δr−1, then the image p(F (Dr × [0, 1])) has diameter ≤ δr, and
F ◦ϕ−1 is the desired δr-homotopy G. G’s for the r-cells of (K,L) together induce
a δr-homotopy H : Kr × [0, 1] → K rel L.

By induction we can conclude that there is a δn-deformation H : K× [0, 1] → K
rel L to L; in particular, the inclusion map L → K is a δn-homotopy equivalence.
Thus κ = 4 · 2n − 3 works. ¤

Proposition 1.5 (Geometric connectivity for relative CW complexes). Let 0 ≤ n
be an integer. There exists a κ > 1 depending on n so that if

(1) X is a metric space,
(2) r is an integer such that 0 ≤ r ≤ n, and
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(3) (K, L) is a (δ, r)-connected n-dimensional relative CW complex with cells
of diameter ≤ δ with respect to a control map p : K → X,

then there exists a max{n, r +2}-dimensional relative CW complex (X ′, L) with no
cells of dimension ≤ r together with a κδ-homotopy equivalence K ′ → K rel L.

Proof. We first eliminate the 0-cells. We add several cells of dimension ≤ 2 to K to
produce another max{n, 2}-dimensional complex which is 0-homotopy equivalent
rel L to K. For each 0-cell v in K−L, there exists a path ρv in K from v to a point
in L whose image in X has diameter ≤ δ. Homotop such ρv off the interiors of the
cells of dimension ≥ 2. Now its image in X has diameter ≤ 2nδ. We may assume
that each ρv is a sequence of consecutive non-loop 1-cells from v to a point in L
and that ρv does not pass through the same 0-cell more than once. The paths {ρv}
may have non-trivial intersections in K − L. Pick a 0-cell v and suppose there are
m paths ρ1, . . . , ρm passing through v among them in addition to the path ρ0 = ρv

starting from v.
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Let e be a 1-cell of K connecting v and another 0-cell v′ which appears in the path ρi,
and let θ : [−1, 1] → K be the characteristic map for e with θ(−1) = v′ and θ(1) = v.
Let ∆1 and ∆2 be the subsets of [−1, 1]×[−1, 1] defined by ∆1 = {(t, u)|t = u} ∼= D1

and ∆2 = {(t, u)|t ≤ u} ∼= D2. In K×[0,m], add to K new 0-cells (v, 1), . . . , (v, m),
new 1-cells v×[0, 1], . . . , v×[m−1,m] and more new 1-cells of the form (θ×1)(∆1),
and new 2m 2-cells of the form (θ× 1)(∆2) to obtain a new n-dimensional relative
complex (K ′, L). We can now replace the path ρi by a new path passing through
(v, i) instead of v for each i = 1, · · · , m so that v is no longer an intersection point
of the paths. The projection K × [0, 1] → K restricts to a map K ′ → K, which is
obviously a 0-homotopy equivalence rel L with respect to p. Compose this with p
to obtain a control map for K ′. By continuing this for the other 0-cells in K − L,
we obtain an n-dimensional complex K̂ which is 0-homotopy equivalent rel L to
the original K. The paths ρv’s do not have intersection in K̂ −L, and their images
have diameter ≤ 2nδ. Each 0-cell of (K̂, L) is contained in exactly one of the paths
ρv’s.

Now we shrink each path ρv to a point to obtain a new complex (K(1), L) with no
0-cells. Actually there is a strong deformation retraction H : (L∪P )×[0, 1] → L∪P
to L of diameter ≤ 2nδ, where P denotes the union of the paths ρv’s. This extends
to a homotopy H : K̂ × [0, 1] → K̂ rel L because of the NDR-property of L ∪ P in
K̂. In order to estimate the diameter of the homotopy, we describe the construction
explicitly. Suppose H has been extended to K̂i−1 × [0, 1] → K̂. For each i-cell e of
(K̂, L) with characteristic map θ : Di → K̂, define a homotopy G : Di× [0, 1] → K̂
by

G(x, t) =

{
H(θ( x

‖x‖ ), 2− 2−t
‖x‖ ) if ‖x‖ > 1− t/2 ,

θ( 2−t
2 x) if ‖x‖ ≤ 1− t/2 .
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This induces an extension of H over e× [0, 1], and the induction step proceeds, and
defines a 3nδ-homotopy H : K̂ × [0, 1] → K̂ rel L. Also note that H induces a
homotopy H ′ : K(1)× [0, 1] → K(1). Let g(1) : K̂ → K(1) denote the quotient map.
Define a map f (1) : K(1) → K̂ as follows:

f (1)(x) =

{
H1(x) if x ∈ K(1) − L = K̂ − P ,

x if x ∈ L .

Then f (1) ◦ g(1) = H1 ' 1K̂ rel L, and g(1) ◦ f (1) = H ′
1 ' 1K(1) rel L. So f (1) :

K(1) → K̂ is a 3nδ-homotopy equivalence rel L. Define p(1) : K(1) → X̂ by p ◦ f (1).
The cells of (K(1), L) have diameter ≤ (6n+1)δ, and (K(1), L) is (9n+1)δ-connected
with respect to p(1).

Let k ≤ r + 1 and suppose inductively that we have constructed constants κ(i)

(i = 1, . . . , k) and homotopy equivalences f (i) : (K(i), L) → (K(i−1), L) rel L such
that

(1) (K(i), L) has only cells of of dimension i, i + 1, . . . , max{n + 1, i + 1},
(2) (K(i), L) has only cells of diameter ≤ κ(i)δ with respect to p(i) = p ◦ f (1) ◦

f (2) ◦ · · · ◦ f (i),
(3) (K(i), L) is (κ(i)δ, r)-connected with respect to p(i), and
(4) f (i) is a κ(i)δ-homotopy equivalence with respect to p(i) and p(i−1).

We eliminate k-cells of (K(k), L) (and at the same time introduce new (k + 2)-
cells) by a method called “cell-trading” ([2], p.25). Let {ek

j } be the k-cells and let
θj : (Dk, Sk−1) → (K(k), L) be the characteristic map for ek

j , and set δ′ = κ(k)δ,
then by assumption there is a δ′-homotopy hj : Dk × [0, 1] → K(k) rel L from θj

to a map into L. Use a cellular approximation to replace hj by a (2n− 2k + 1)δ′-
homotopy hj : Dk×[0, 1] → K

(k)
k+1. Consider a (k+2)-ball Dk+2. Its boundary is the

union of two (k +1)-balls B1 ∪B2. Fix an identification of B1 with Dk× [0, 1], and
hence an identification of ∂B1 = ∂B2 with ∂(Dk × [0, 1]). Attach new (k + 1)-cells
{ek+1

j } to K(k) using the map

hj |∂(Dk × [0, 1]) : ∂B2 −→ K
(k)
k

to define a new complex K̄(k), and then attach new (k + 2)-cells {ek+2
j } to K̄(k)

using the map
hj ∪ 1B2 : ∂Dk+2 = B1 ∪B2 −→ K̄

(k)
k+1 ,

to obtain a complex K̂(k). Since K̂(k) is obtained from K(k) by simultaneous
elementary expansions, the collapsing map K̂(k) → K(k) is a 0-homotopy equiv-
alence, and (K̂(k), L) is (δ′, r)-connected. The diameter of added cells of K̂(k) is
≤ (4n−4k+3)δ′ Note that the subcomplex (K(k)

k ∪⋃
j ek+1

j , L) deforms into L fixing
L by a (4n−4k+3)δ′-homotopy, and that the homotopy extends to a δ′′-homotopy
of K̂(k), where δ′′ = (1 + 2(4n − 4k + 3)(n + 1 − k))δ′. Now define K(k+1) to be
the space obtained from shrinking each of the added closed (k + 1)-cells of K̂(k) to
a point, then K(k+1) has no cells of dimension ≤ k, and there is a δ′′-homotopy
equivalence f (k+1) : K(k+1) → K(k). The pair (K(k+1), L) is (δ′+3δ′′, r)-connected,
so

κ(k+1) = (4 + 6(4n− 4k + 3)(n + 1− k))κ(k)

works. This complets the inductive step and the proof is finished. ¤

The proof above is an adaptation of Quinn’s proof of the geometric connectivity
theorem for handlebodies [4] to the CW complex case. The following is a special
case of it:
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Theorem 1.6 (Quinn). Let n ≥ 5 be an integer. There exists a κ > 1 depending
on n so that if

(1) X is a metric space,
(2) r is an integer such that 0 ≤ r ≤ n− 4, and
(3) p : (N, ∂0N) → X is a (δ, r)-connected n-dimensional compact manifold

with a handlebody structure of diameter ≤ δ,
then (N, ∂0N) has a handlebody structure of diameter ≤ κδ with no handles of
dimension ≤ r.

2. Geometric Chain Complexes

In this section, we first review the theory of geometric chain complexes associated
with transverse relative CW complexes developed by Quinn [6], and then study a
Hurewicz-type criterion for (δ, n)-connectivity. We use the Z-coefficients.

First let K be any space. Consider a map S : |S| → K from a set |S|. We identify
S with its graph in |S| ×K. The two components of an element s ∈ S ⊂ |S| ×K
will be denoted |s| ∈ |S| and [s](= S(|s|)) ∈ K, respectively. The free Z-module on
S is called the geometric Z-module on K generated by S, and is denoted Z[S]. It
is finitely generated if |S| is a finite set. If Z[S] and Z[T ] are geometric modules on
K, a geometric morphism f : Z[S] → Z[T ] is a Z-coefficient linear combination of
‘paths’ (s, ρ, t) from s ∈ S to t ∈ T , where ρ : [0, τ ] → K is a Moore path such that
its initial point ρ(0) is [s] and its terminal point ρ(τ) is [t]. The composite g ◦ f of
consecutive geometric morphisms

f =
∑

λ∈Λ

mλ(sλ, ρλ, tλ) : Z[S] → Z[T ] , g =
∑

γ∈Γ

nγ(t′γ , σγ , uγ) : Z[T ] → Z[U ]

is defined to be ∑

λ∈Λ,γ∈Γ,tλ=t′γ

nγmλ(sλ, σγρλ, uγ).

We are using the Moore composition of paths here. Two paths (s, ρ : [0, τ ], t) and
(s′, ρ′ : [0, τ ′], t′) are homotopic if s = s′, t = t′, and there exists a homotopy from
ρ to ρ′ through Moore paths. A homotopy (') of a geometric morphism is a finite
sequence of the following two operations:

• homotopies of the paths,
• combining two terms m(s, ρ, t)+n(s, ρ, t) into (m+n)(s, ρ, t), and its inverse.

Definition. A (geometric Z-module) chain complex on K is a sequence of maps of
geometric modules on K

(C, d) : · · · → Cr+1
dr+1−−−→ Cr

dr−→ Cr−1 → · · ·
such that dr ◦ dr+1 ' 0.

Let us recall the construction of the geometric cellular chain complex C∗(K, L)
of a relative CW complex (K, L) from [6]. Let us assume that (K,L) is transverse
in the following sense. As in the previous section, Kk will denote the k-skeleton of
(K,L).

Definition. A map f : (Mk, ∂M) → (Kk,Kk−1) from a smooth k-dimensional
manifold (possibly with boundary) is said to be transverse to the k-cells if for
each open k-cell ek of (K,L), f−1(ek) is the union of the interiors of a finitely
many disjoint closed k-balls Bk

α in M such that there exists a homeomorphism
ψα : Bk

i → Dk to the k-ball Dk with θ ◦ ψα = f |Bk
α for each α, where θ : Dk → K

denotes the characteristic map for the k-cell ek. A relative CW complex (K, L) is
transverse if the attaching maps θ : Sk → Kk of the (k + 1)-cells are all transverse
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to the k-cells for every k. Any continuous map f : (Mk, ∂M) → (Kk,Kk−1) is
homotopic rel ∂ to one that is transverse to the k-cells, and any finite relative CW
complex is simple homotopy equivalent to a transverse relative CW complex.

Suppose (K, L) is transverse. The geometric celluar chain group Ck(K,L) is
defined to be the free abelian group generated by the set Sk = {ek

j } of the k-cells
of (K, L) together with the map Sk → K sending each k-cell ek

j to the image
θk

j (O) of the origin O of the k-ball Dk by the characteristic map θk
j : Dk → K

for ek
j . Let ek+1

i be a (k + 1)-cell of (K, L) and ek
j be a k-cell of (K, L). Let

θk+1
i : Dk+1 → K and θk

j : Dk → K be the characteristic maps for ek+1
i and ek

j .
By assumption, the restriction θ = θk+1

i |Sk : (Sk, ∅) → (Kk, Kk−1) is transverse to
the k-cells, and the inverse image θ−1(ek) is the union of the interiors of a finitely
many disjoint closed k-balls {Bi,j

α } and there are homeomorphisms ψi,j
α : Bi,j

α → Dk

such that θk
j ◦ ψi,j

α = θk+1
i |Bi,j

α . Let ρα be a line segment (viewed as a path
of constant speed 1) connecting the center O of Dk+1 and the inverse image of
the center O of Dk by ψi,j

α . Now we need to fix our convention on orientaions of
manifolds. We give the standard orientations [Dk+1] and [Dk] to Dk+1 and Dk, and
give the orientation [Sk] to Sk so that [the unit outward normal vector] × [Sk] =
[Dk+1]. We give the orientation induced from that of Sk to Bi,j

α . The sign of a
homeomorphism g : N1 → N2 of oriented manifolds is defined to be +1 or −1
according as g is orientsation preserving or not, and is denoted sign(g). Now let
di,j be the geometric morphism from Ck+1(K, L) to Ck(K, L) defined by the sum∑

α sign(ψi,j
α )θk+1

i ◦ ρα. The boundary map dk+1 : Ck+1(K, L) → Ck(K, L) is
defined by the sum

∑
i,j di,j . A transversality argument with respect to (k − 1)-

cells applied to θk+1
i | : Sk − Int

⋃
j,α Bi,j

α → Kk−1 shows that d ◦ d is homotopic to
0.
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A geometric morphism f : S → T between geometric modules on a space K is
said to have radius ≤ ε with respect to a control map p : K → X if, for each path
ρ : [0, τ ] → K with non-zero coefficient in f , the image of p ◦ ρ in X is contained in
the intersection of the closed ε-neighborhoods of p◦ρ(0) and p◦ρ(τ). This definition
extends to geometric module chain complexes, chain maps, chain homotopies, chain
contractions, and so on in an obvious manner. See [7], for example. If all the cells
of (K,L) have diameter ≤ δ with respect to p : X → X, then C∗(K,L) is a chain
complex of radius ≤ δ.

The following proposition illustrates a typical use of geometric morphisms in the
theory of controlled topology.
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Proposition 2.1. Let n be an integer ≥ 2, M be a connected and simply-connected
oriented n-dimensional manifold with a possibly empty boundary ∂M , and (K, L)
be an n-dimensional relative CW complex whose n-cells have diameter ≤ δ with
respect to a control map p : K → X. Choose a basepoint x0 of M . If a map
f : (M,∂M) → (K,Kn−1) is transverse to all the n-cells of (K, L) and the image
f(M) has diameter ≤ δ and meeets only finitely many n-cells of (K,L), then f
has an associated geometric morphism σ(f) : Z[{f(x0)}] → Cn(K, L) of radius ≤ δ
well-defined up to homotopy of radius ≤ δ such that if σ(f) is δ-homotopic to 0
then f is 3δ-homotopic rel ∂ to a map into Kn−1.

Proof. The geometric morphism σ(f) is defined as follows. Let en
j be the open

n-cells of (K,L), and let θj : Dn → K be the characteristic map for en
j . Since f is

transverse to the n-cells of (K, L), there are finitely many closed n-balls Bn
j,α and

homeomorphisms ψj,α : Bn
j,α → Dn such that θj ◦ ψj,α = f |Bn

j,α and f−1(en
j ) is

the union
⋃

α Bn
j,α. For each Bn

j,α, connect x0 and ψ−1
j,α(O) by a path ρj,α in M .

Now σ(f) is defined to be the sum
∑

j,α sign(ψj,α)f ◦ ρj,α. The only ambiguity is
the choice of the paths, and these paths are unique up to homotopy, since M is
simply-connected.

Now suppose σ(f) is modified by a homotopy of f ◦ ρj,α.
¤

Proposition 2.2 (Controlled Hurewicz Theorem). Let n ≥ 1 be an integer. There
exists a κ > 1 depending on n so that if

(1) X is a metric space,
(2) r is an integer such that 0 ≤ r ≤ n,
(3) (K, L) is a (δ, 1.5)-connected relative n-dimensional CW complex with cells

of diameter ≤ δ with respect to a control map p : K → X, and
(4) there are geometric morphisms sk : Ck(K, L) → Ck+1(K, L) of radius ≤ δ

(k = 0, . . . , r) such that dk+1sk + sk−1dk '2δ 1,
then (K, L) is (κδ, r)-connected.

Proof. ¤
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