
1. Preliminaries.

In this section we review the basics on chain complexes and chain maps. Chain
complexes in the category of finitely generated free or projective modules over some
ring R are the most important, but we also need to handle other chain complexes. We
fix a category A and consider the chain complexes made up of objects and morphisms
in the category. We require that the category A be additive; i.e. A satisfies the
following four conditions:

1. The set Hom(A,B) of the morphisms from A to B is an abelian group for each
A, B ∈ ObjA.

2. Composition of morphisms is bilinear.
3. A is equipped with a distinguished object 0 such that Hom(A, 0) = 0, Hom(0, A) =

0 for each A ∈ ObjA.
4. For each A, B ∈ ObjA, there is an object A⊕B together with two morphisms

A
pA←−− A⊕B

pB−−→ B

such that, for any X ∈ ObjA and for any pair of morphisms fA ∈ Hom(X, A),
fB ∈ Hom(X, B), there exists a unique morphism f : X → A ⊕ B which makes
the following diagram commute.

X
fA

||xx
xx

xx
xx

x
∃! f

²²

fB

##FF
FF

FF
FF

F

A A⊕BpA

oo
pB

// B

Under the conditions 1 – 3, the condition 4 is equivalent to each of the following:

4′. For each A, B ∈ ObjA, there is an object A⊕B together with two morphisms

A
iA−→ A⊕B

iB←−− B

such that, for any Y ∈ ObjA and for any pair of morphisms gA ∈ Hom(A, Y ),
gB ∈ Hom(B, Y ), there exists a unique morphism g : A ⊕ B → Y which makes
the following diagram commute:

Y

A

gA

<<xxxxxxxxx
iA

// A⊕B

g

OO

B
iB

oo

gB

ccFFFFFFFFF

4′′. For each A, B ∈ ObjA, there is an object A⊕B together with four morphisms

A
iA−−−→←−−−
pA

A⊕B
pB−−−→←−−−
iB

B

1



such that

pAiA = 1A, pBiA = 0, pBiB = 1B , pAiB = 0,

iApA + iBpB = 1A⊕B .

Notation. The morphisms f : X → A ⊕ B and g : A ⊕ B → Y above will be

denoted
(

fA

fB

)
and ( gA gB ) in the matrix form. More generally a morphism f :

A1 ⊕ . . .⊕Am → B1 ⊕ . . .⊕Bn will be expressed as a matrix




A1 . . . Am

B1 f11 . . . f1m
...

...
. . .

...
Bn fn1 . . . fnm




for some morphisms fij : Aj → Bi.

Definitions.
(1) A chain complex C in A is a sequence of morphisms in A

C : . . .
dC−−−→ Cr+1

dC−−−→ Cr
dC−−−→ Cr−1

dC−−−→ . . .

such that d2
C = 0 : Cr+1 → Cr−1 for every r ∈ Z. It is n-dimensional if Cr = 0

for every r > n and for every n < 0.
(2) A chain map f : C → D between two chain complexes in A is a collection

{fr : Cr → Dr}

of morphisms such that

dDfr = fr−1dC : Cr → Dr−1

for every r.
(3) A chain homotopy h : f ' f ′ : C → D between two chain maps f , f ′ : C → D is

a collection
{hr : Cr → Dr+1}

of morphisms such that

dDh + hdC = f ′ − f : Cr → Dr .

2



(4) A chain map f : C → D is an isomorphism if there is a chain map g : D → C
such that

gf = 1 : C → C, fg = 1 : D → D .

A chain map f : C → D is a chain equivalence if there is a chain map g : D → C
such that

gf ' 1 : C → C, fg ' 1 : D → D .

(5) The algebraic mapping cone C(f) of a chain map f : C → D is defined by

dC(f) =
(

dD (−)r−1f

0 dC

)
: C(f)r = Dr⊕Cr−1 → C(f)r−1 = Dr−1⊕Cr−2.

(6) The suspension SC and the desuspension ΩC of a chain complex C are defined
by:

(dSC)r = (dC)r−1 : (SC)r = Cr−1 −−→ Cr−2 = (SC)r−1

(dΩC)r = (dC)r+1 : (ΩC)r = Cr+1 −−→ Cr = (ΩC)r−1.

For a chain map f : C → D, its suspension Sf : SC → SD and desuspension
Ωf : ΩC → ΩD are defined by

(Sf)r = −fr−1 : (SC)r = Cr−1 −−→ Dr−1 = (SD)r

(Ωf)r = −fr+1 : (ΩC)r = Cr+1 −−→ Dr+1 = (ΩD)r .

The minus sign is used so that we have identities

C(Sf) = S(Cf) and C(Ωf) = ΩC(f) .

But note that these behave badly with respect to compositions:

S(gf) = −(Sg)(Sf) and Ω(gf) = −(Ωg)(Ωf) .

(7) A chain complex B is a subcomplex of a chain complex C if Cr = Br ⊕ B′
r for

some B′
r ∈ ObjA, and the composition

Br
iB−−→ Br ⊕B′

r
dC−−→ Br−1 ⊕B′

r−1

pB′−−→ B′
r−1

is equal to 0; in ohter words, C is the algebraic mapping cone of a chain map
f : ΩB′ → B for some chain complex B′. The chain complex B′ is called the
quotient and is denoted C/B. The morphisms iB define a chain map i : B → C
called the inclusion map, and the morphisms pB′ define a chain map p : C → C/B
called the projection map.
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(8) If C = {(Cr, dr)} is a chain complex and ε is an integer, then ε • C will denote
the chain complex {Cr, εdr}. The equality

ε • C(f : C → D) = C(εf : ε • C → ε •D)

can be easily verified. When ε = ±1, ε • C is isomorphic to C; an isomorphism
is given by εr1Cr : Cr → Cr.

(9) Given chain complexes C and D in A, let HomA(C, D) be the Z-module chain
complex defined by

dHomA(C,D) : HomA(C, D)n =
∑

q−p=n

HomA(Cp, Dq) → HomA(C, D)n−1;

f 7→ dDf + (−)qfdC (: Cq−n+1 → Cq).

(10) Given a right R-module chain complex C and a left R-module chain complex D,
let C ⊗R D be the Z-module chain complex defined by

dC⊗RD : (C ⊗R D)n =
∑

p+q=n

Cp ⊗R Dq → (C ⊗R D)n−1;

x⊗ y 7→ x⊗ dD(y) + (−)qdC(x)⊗ y .

(11) When C,C ′, D, D′ are left R-module chain complexes, there is a Z-module chain
map τ : HomR(C,D)⊗Z HomR(C ′, D′) → HomR(C ⊗Z C ′, D ⊗Z D′) defined by

τ : HomR(C, D)m ⊗Z HomR(C ′, D′)n → HomR(C ⊗Z C ′, D ⊗Z D′)m+n

f ⊗ g 7→ {x⊗ y(∈ Cr ⊗Z C ′s) 7→ (−)(m−r)sf(x)⊗ g(y)}.

Next we review some properties of the algebraic mapping cone.

Proposition. A chain map f : C → D is a chain equivalence if and only if its
algebraic mapping cone C(f) is chain contractible.
Proof: Suppose f is a chain equivalence. By definition, there exist a chain map
g : D → C and chain homotopies

h : gf ' 1 : C → C, k : fg ' 1 : D → D .

Then the following matrix defines a chain contraction of C(f):
(

k + (fh− kf)g (−)r(fh− kf)h
(−)rg h

)

: C(f)r = Dr ⊕ Cr−1 → Dr+1 ⊕ Cr = C(f)r+1.
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Conversely suppose a chain contraction Γ : 0 ' 1 : C(f) → C(f) is given. Define
gr : Dr → Cr, hr−1 : Cr−1 → Cr, and kr : Dr → Dr+1 by:

Γ =
(

k ∗
(−)rg h

)
: C(f)r = Dr ⊕ Cr−1 → Dr+1 ⊕ Cr = C(f)r+1 .

Then g : D → C is a chain map and the equalities dh+hd = 1− gf , dk +kd = 1−fg
hold.

Definition. A triad Γ of chain complexes

C
f //

Γ : g

²²

h

&&&f&f&f&f&f&f&f
D

g′

²²
C ′

f ′
// D′

consists of chain maps

f : C → D, f ′ : C ′ → D′, g : C → C ′, g′ : D → D′

and a chain homotopy h : g′f ' f ′g : C → D′.

Such a triad induces a chain map (g, g′;h) : C(f) → C(f ′) :

(g, g′;h) =
(

g′ (−)rh
0 g

)
: C(f)r = Dr ⊕ Cr−1 → C(f ′)r = D′

r ⊕ C ′r−1

Conversely, if two chain maps f : C → D, f ′ : C ′ → D′ and a chain map G : C(f) →
C(f ′) are given, and if G can be written using a matrix of the form

(
g′ ξ
0 g

)
: C(f)r = Dr ⊕ Cr−1 → C(f ′)r = D′

r ⊕ C ′r−1 ,

then g : C → C ′ and g′ : D → D′ are chain maps, and a chain homotopy h : g′f ' f ′g
can be defined by the formula

h = (−)r+1ξ : Cr → D′
r+1 .

If both g and g′ are chain equivalences, then the next Proposition assures us that G
itself is a chain equivalence.
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Proposition. If both g and g′ are chain equivalences in the triad above, then (g, g′;h) :
C(f) → C(f ′) is also a chain equivalence.

If all the chain complexes are free, then C((g, g′; h)) is chain contractible if and only
if it is acyclic, and the above can be deduced using homology exact sequences and
5-lemma. We give a proof which does not use homology.

Proof: Consider the following triad:

C
−g //

−f

²²

h

&&&f&f&f&f&f&f&f
C ′

f ′

²²
D

g′
// D′

A direct calculation shows that C((g, g′; h)) ∼= C((−f, f ′; h)). Since C(−g) and C(g′)
are both chain contractible, (−f, f ′; h) : C(−g) → C(g′) is a chain equivalence. There-
fore (g, g′; h) is also a chain equivalence.

From the triad Γ above, we can produce another triad

C
g //

f

²²

−h

&&&f&f&f&f&f&f&f
D

f ′

²²
C ′

g′
// D′

and this induces a chain map (f, f ′;−h) : C(g) → C(g′). The algebraic mapping
cone C(−(f, f ′;−h)) is denoted C(Γ) [Ranicki]. It is isomorphic to C((g, g′; h)) and
C((−f, f ′; h))

Let f : C → D be a chain map of chain complexes in A, then D is a subcomplex
of the algebraic mapping cone C(f). Let i : D → C(f) denote the inclusion map.
Note that the quotient C(f)/D is equal to the suspension SC of C. We can extend

the sequence C
f−→ D

i−→ C(f) to the right by taking the algebraic mapping cone of i:

C
f−−→ D

i−−→ C(f)
j−−→ C(i) ,

where j is the inclusion map.
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Proposition. C(i) is chain equivalent to C(f)/D = SC.

Proof: Note that C(i) and SC can be viewed as the algebraic mapping cones of

F =
(

f
0

)
: C −−−−→ C(1D : D → D) ,

0 : C −−−−→ 0 ,

respectively. These fit into the following triad of chain complexes:

C
F //

1C

²²

0

&&&f
&f&f&f&f&f&f&f&f
C(1D)

0

²²
C

0
// 0

whose vertical arrows are both chain equivalences. Therefore the chain map (1C , 0; 0)
gives the desired chain equivalence.

Since it will be necessary to have the explicit formula for the chain equivalences,
we write them down here. The following matrices give a chain equivalence and a
homotopy inverse:

α = ( 0 1 0 ) : C(i)r = Dr ⊕ Cr−1 ⊕Dr−1 −−−−→ Cr−1 = (SC)r,

β =




0
1
−f


 : (SC)r = Cr−1 −−−−→ Dr ⊕ Cr−1 ⊕Dr−1 = C(i)r.

The chain map β is induced by the triad :

C
0 //

1C

²²

h

&&&f&f&f&f&f&f&f
0

0

²²
C

F
// C(1D)

where the chain homotopy h : 0 '
(

f
0

)
: C → C(1D) is defined by

(
0

(−)rf

)
: Cr −−−−→ Dr+1 ⊕Dr = C(1D)r+1
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The composite αβ is obviously 1SC . The other composite βα is given by the matrix




0 0 0
0 1 0
0 −f 0


 : Dr ⊕ Cr−1 ⊕Dr−1 −−→ Dr ⊕ Cr−1 ⊕Dr−1,

and it is chain homotopic to 1C(i); the following matrix defines a desired chain homo-
topy: 


0 0 0
0 0 0

(−)r 0 0


 : Dr ⊕ Cr−1 ⊕Dr−1 −−→ Dr+1 ⊕ Cr ⊕Dr.

We can continue this process to get a sequence

C
f−−→ D

i−−→ C(f)
j−−→ C(i) k−−→ C(j) l−−→ C(k) m−−→ C(l)−−→ . . . ,

where k, l, . . . are inclusion maps. Again , C(j), C(k), C(l), . . . are chain equivalent to
C(i)/C(f) = SD, C(j)/C(i) = SC(f), C(k)/C(j) = SC(i) ' S2C, . . . , and we obtain a
sequence

C
f−−→ D

i−−→ C(f)
p−−→ SC

Sf−−−→ SD
Si−−−→ SC(f)

Sp−−−→ S2C
S2f−−−−→ . . . .

In the case of the inclusion map i : C ′ → C from a subcomplex C ′ of C into C,
C is the algebraic mapping cone C(ρ) of some chain map ρ : Ω(C/C ′) → C ′, and we
obtain a sequence

Ω(C/C ′)
ρ−−→ C ′ i−−→ C

p−−→ C/C ′
Sρ−−−→ SC ′ Si−−−→ SC

Sp−−−→ S(C/C ′)
S2ρ−−−−→ . . . .

The chain equivalence

β =




0
1
−ρ


 : (C/C ′)r → C ′r ⊕ (C/C ′)r ⊕ (C/C ′)r−1 = C(i)r

from C/C ′ to C(i) will be used repeatedly later.
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2. Quadratic structures on complexes and chain maps

In this section we review the basics of Ranicki’s theory of quadratic complexes in an
additive category with involution [Additive L-theory].

Definition. An involution on an additive category A is a contravariant functor

∗ : A→ A ;
{

M 7→ M∗

(f : M → N) 7→ (f∗ : N∗ → M∗)

together with a natural equivalence

e : 1A → ∗∗ : A→ A ; M 7→ (e(M) : M → M∗∗)

such that for every object M in A

e(M)∗e(M∗) = 1M∗ : M∗ → M∗∗∗ → M∗ .

We shall use e(M) to identify M∗∗ = M .

Examples. Let R denote a ring with involution, i.e. an associative ring with 1
together with a function

¯ : R → R ; a 7→ ā

such that

a + b = ā + b̄ , ab = b̄ā , ¯̄a = a , 1̄ = 1 ∈ R (a, b ∈ R) .

Let us consider a subcategory A of the category of the left R-modules and the R-
module morphisms. We list requirements for A below, while giving several definitions.
(The part printed in italics are not part of the requirement. They state the general
fact or definiton.)

1. 0 and R are objects in A.
2. If M and N are objects in A, then so is M ⊕ N , and the inclusion maps M →

M ⊕N , N → M ⊕N and the projection maps M ⊕N → M , M ⊕N → N are
morphisms in A.

3. For each pair of objects M , N of A, the set of the morphisms Hom(M, N) from
M to N is an abelian group. In particular, if f : M → N is a morphism, then so
is −f : M → N .

4. For each a ∈ R and each f ∈ Hom(M, R), the left R-module morphism af :
M → R which sends x ∈ M to f(x) · ā is a morphism of A, and with respect
to this left R-module structure Hom(M, R) is an object of A. This is called the
dual of M and is denoted M∗.
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5. For each morphism f : M → N and g ∈ N∗, gf is an element of M∗. Then
f : M → N induces a left R-module morphism

f∗ : N∗ → M∗ ; g 7→ gf .

We require this to be an element of Hom(N∗,M∗), and it is called the dual of f .
6. For each object M in A and each element x ∈ M , there is a left R-module

morphism
M∗ → R ; h 7→ h(x) .

We require that this be an element of M∗∗ and that the correspondence

M → M∗∗ ; x 7→ (h 7→ h(x)) (h ∈ M∗)

be an isomorphism in the category A.

Then A is an additive category with involution in the sense above. Each of the
following satisfy these requiremets:
(a) the category of finitely generated free R-modules,
(b) the category of finitely generated projective R-modules,
(c) the category of based free R-modules and locally finite R-module morphisms,
where an R-module morphism f :

⊕
Rxα →

⊕
Ryβ between based free R-modules

is locally finite if for every β there are only finitely many α’s such that yβ appears
with non-trivial coefficient in f(xα).

In the rest of the section, we fix an additive category A with involution.

For a chain complex C in A, let C∗ be the chain complex defined by

dC∗ = (dC)∗ : (C∗)r = C−r = (C−r)∗ → (C∗)r−1 = C−r+1,

and let Cn−∗ (n ∈ Z) be the chain complex defined by

dCn−∗ = (−)r(dC)∗ : (Cn−∗)r = Cn−r → (Cn−∗)r−1 = Cn−r+1.

Proposition. (1) If f : C → D is a chain map of chain complexes in A, then so is
f∗ : Dn−∗ → Cn−∗. If f is a chain equivalence, then so is f∗.
(2) Cn+1−∗ is isomorphic to S(Cn−∗).

Proof: (1) Immediate from the definiton.
(2) An isomorphism is defined by

Cn+1−r 3 x 7→ (−)n−rx ∈ Cn−(r−1) .
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Now we fix ε = ±1. Given a finite-dimensional chain complex C in A let the
generator T ∈ Z2 act on Hom(C∗, C) by the involution

Tε : Hom(Cp, Cq) → Hom(Cq, Cp) ; f 7→ (−)pqεf∗ .

Define a Z-module chain complex W%C by

W%C = W ⊗Z[Z2] Hom(C∗, C),

where W is the standard free Z[Z2]-resolution of Z

W : . . . → Z[Z2]
1−T−→ Z[Z2]

1+T−→ Z[Z2]
1−T−→ Z[Z2] → 0.

(W%C)n is isomorphic to
∑

s≥0 Hom(C∗, C)n−s and an n-chain of W%C can be viewed
as a collection

ψ = (ψs ∈ Hom(Cn−r−s, Cr))s≥0.

Its boundary is

(
dψs + (−)rψsd

∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1) : Cn−r−s−1 → Cr (r ∈ Z)
)
s≥0

.

W%C is a Z[Z2]-module chain complex by the action: Tψ = (Tψs). In particular,
if ψ is a cycle then so is Tψ. The set of n-cycles of W%C is denoted ZnC. It is a
Z[Z2]-module.

Definition. An element ψ of ZnC is called an n-dimensional quadratic structure on
C. It induces a chain map in A

Dψ = (1 + T )ψ0 : Cn−∗ → C ,

which is called the duality map. The quadratic structure ψ is said to be Poincaré if
Dψ is a chain equivalence. A pair (C, ψ) of an n-dimensional complex C in A and an
n-dimensional quadratic (Poincaré) structure ψ is called an n-dimensional quadratic
(Poincaré) complex in A.

Remark. Homologous n-dimensional quadratic structures ψ, ψ′ ∈ ZnC on C induce
chain homotopic duality maps Dψ, Dψ′ . If χ ∈ (W%C)n+1 is a chain such that
dχ = ψ′ − ψ, then (1 + T )χ0 : Cn−r → Cr+1 defines a desired chain homotopy
between Dψ and Dψ′ .
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A chain map f : C −→ D in A induces a Z[Z2]-module chain map

Hom(f∗, f) : Hom(C∗, C) → Hom(D∗, D) ; φ 7→ fφf∗,

and hence also a Z[Z2]-module chain map f% : W%C → W%D ;

ψ = (ψs) 7→ f%ψ = (fψsf
∗).

Define a Z[Z2]-module chain complex W%f by

W%f = C(f% : W%C → W%D).

The boundary of an (n + 1)-chain (δψ, ψ) ∈ (W%D)n+1 ⊕ (W%C)n of W%f is(
(d(δψs) + (−)r(δψs)d∗ + (−)n−s(δψs+1 + (−)s+1Tδψs+1) + (−)nfψsf

∗

: Dn−r−s → Dr (r ∈ Z))s≥0,

(dψs + (−)rψsd
∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1)

: Cn−r−s−1 → Cr (r ∈ Z))s≥0

)
.

The set of n-cycles of W%f is denoted Znf . It is a Z[Z2]-module.

Definition. An element (δψ, ψ) of Zn+1f is called an (n + 1)-dimensional quadratic
structure on f . The duality map D(δψ,ψ) : Dn+1−∗ → C(f) is a chain map in A
defined by the matrix:

D(δψ,ψ) =
(

(1 + T )δψ0

(−)n+1−r(1 + T )ψ0f
∗

)
: Dn+1−r → C(f)r = Dr ⊕ Cr−1

The quadratic structure (δψ, ψ) is said to be Poincaré if D(δψ,ψ) is a chain equivalence.
A pair (f : C → D, (δψ, ψ)) of a chain map f in A from an n-dimensional chain com-
plex C to an (n+1)-dimensional chain complex D and an (n+1)-dimensional quadratic
(Poincaré) structure (δψ, ψ) is called an (n + 1)-dimensional quadratic (Poincaré )
pair in A.

Remarks. (1) An (n + 1)-dimensional quadratic structure (δψ, ψ) on f : C → D is
Poincaré if and only if the T -dual D̄(δψ,ψ) : C(f)n+1−∗ → D ;

D̄(δψ,ψ) = ((1 + T )δψ0, f(1 + T )ψ0) : Dn+1−r ⊕ Cn−r → D .

of the duality map D(δψ,ψ) : Dn+1−∗ → C(f) is a chain equivalence.
(2) If (f : C → D, (δψ, ψ)) is an (n + 1)-dimensional quadratic (Poincaré) pair in A,
then its boundary (C,ψ) is an n-dimensional quadratic (Poincaré) complex in A.
(3) Homologous elements (δψ, ψ), (δψ′, ψ′) ∈ Zn+1f induce chain homotopic dual-
ity maps D(δψ,ψ), D(δψ′,ψ′). If (δχ, χ) ∈ (W%f)n+2 is a chain whose boundary is
(δψ′, ψ′)− (δψ, ψ), then(

(1 + T )δχ0

(−)n+1−r(1 + T )χ0f
∗

)
: Dn+1−r → C(f)r = Dr+1 ⊕ Cr−1

defines a desired chain homotopy.
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From given quadratic structures, we can construct other structures in several
ways. Firstly, the T -duals of quadratic structures are also quadratic structures: If
ψ = {ψs} is an n-dimensional quadratic structure on C, then so is Tψ = {Tψs};
if (δψ, ψ) is an (n + 1)-dimensional quadratic structure on f : C → D, then so is
T (δψ, ψ) = (Tδψ, Tψ) = {Tδψs, Tψs}. In general, the T -dual is not homologous to
the original structure. Secondly, we can consider T̂ -duals of quadratic structures. For
θ = {θs}, define T̂ θ = {T̂ θs} by

T̂ θ0 = Tθ0 and T̂ θs = −θs for s > 0 .

If ψ = {ψs} is an n-dimensional quadratic structure on C, then so is T̂ψ = {T̂ψs};
if (δψ, ψ) is an (n + 1)-dimensional quadratic structure on f : C → D, then so is
T̂ (δψ, ψ) = (T̂ δψ, T̂ψ) = {T̂ δψs, T̂ψs}.

Proposition. The T̂ -dual is homologous to the original quadratic structure.

Proof. Suppose (δψ, ψ) is an (n + 1)-dimensional quadratic structure on f . Define
δχs : Dn+2−r−s → Dr and χs : Cn+1−r−s → Cr by:

δχ0 = 0 , δχs = (−)n−sδψs−1 for s > 0,

χ0 = 0 , χs = (−)n−1−sψs−1 for s > 0 .

Then a direct calculation shows that d(δχ, χ) = (δψ, ψ)− T̂ (δψ, ψ).

We describe the union operation of adjoing pairs. Let f : C → D′, g : C → D′′

be chain maps in A and suppose we are given two (n + 1)-cycles (δψ′,−ψ) ∈ Zn+1f ,

(δψ′′, ψ) ∈ Zn+1g. Let D = D′ ∪C D′′ denote the algebraic mapping cone C(
(

f
g

)
)

and define the union δψ′ ∪ψ δψ′′ ∈ Zn+1D along ψ by

(δψ′ ∪ψ δψ′′)s =




δψ′s 0 0
(−)n−rψsf

∗ (−)n+1−r−sTψs+1 0
0 (−)sgψs δψ′′s




: Dn+1−r−s = D′n+1−r−s ⊕ Cn−r−s ⊕D′′n+1−r−s → Dr = D′
r ⊕ Cr−1 ⊕D′′

r .

whose T -dual is expressed by the matrix:

T (δψ′ ∪ψ δψ′′)s =




Tδψ′s (−)s+1fTψs 0
0 (−)n−r−sψs+1 (−)n+1−rTψsg

∗

0 0 Tδψ′′s




: Dn+1−r−s = D′n+1−r−s ⊕ Cn−r−s ⊕D′′n+1−r−s → Dr = D′
r ⊕ Cr−1 ⊕D′′

r ,
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If (δψ′,−ψ) and (δψ′′, ψ) are Poincaré then the union δψ′ ∪ψ δψ′′ is also Poincaré.
This will be proved in a more general context later and we only record the duality
map for the union:

(1 + T )(δψ′ ∪ψ δψ′′)0 =




(1 + T )δψ′0 −fTψ0 0
(−)n−rψ0f

∗ (−)n−r(1− T )ψ1 (−)n+1−rTψ0g
∗

0 gψ0 (1 + T )δψ′′0




: Dn+1−r = D′n+1−r ⊕ Cn−r ⊕D′′n+1−r → Dr = D′
r ⊕ Cr−1 ⊕D′′

r ,

The pair (D, δψ′ ∪ψ δψ′′) is called the union of the pairs (f : C → D′, (δψ′,−ψ)) and
(g : C → D′′, (δψ′′, ψ)) along (C, ψ).

If we switch the order and take the union of (δψ′′, ψ) and (δψ′,−ψ) along −ψ,
then we get another element represented by a matrix

(δψ′′ ∪−ψ δψ′)s =




δψ′s (−)s+1fψs 0
0 (−)n−r−sTψs+1 (−)n+1−rψsg

∗

0 0 δψ′′s




: Dn+1−r−s = D′n+1−r−s ⊕ Cn−r−s ⊕D′′n+1−r−s → Dr = D′
r ⊕ Cr−1 ⊕D′′

r ,

after reordering the direct summands. This element is homologous to δψ′ ∪ψ δψ′′,
because the difference

δψ′′ ∪−ψ δψ′ − δψ′ ∪ψ δψ′′

is the boundary of an (n + 2)-chain θ ∈ W%D defined by:

θs =




0 0 0
0 (−)r+sψs 0
0 0 0


 :Dn+2−r = D′n+2−s−r ⊕ Cn+1−s−r ⊕D′′n+2−s−r

→ Dr = D′
r ⊕ Cr−1 ⊕D′′

r .

Also note the identity δψ′′ ∪−ψ δψ′ = T (Tδψ′ ∪Tψ Tδψ′′) .

Definition. A cobordism between n-dimensional quadratic complexes (C,ψ), (C ′, ψ′)
in A is an (n + 1)-dimensional quadratic pair

( f f ′ ) : C ⊕ C ′ → D, (δψ, ψ ⊕−ψ′) ∈ W%(( f f ′ ))
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with boundary (C ⊕ C ′, ψ ⊕−ψ′). Such a cobordism is Poincaré if the pair above is
Poincaré.

Remarks. (1) Suppose (C, ψ) is an n-dimensional quadratic (Poincaré) complex and
ψ′ is an element of ZnC homologous to ψ, i.e. dW%Cδψ = ψ′ − ψ for some δψ, then

(( 1 1 ) : C ⊕ C → C, ((−)nδψ, ψ ⊕−ψ′))

is a (Poincaré) cobordism between (C,ψ) and (C, ψ′).
(2) The union operarion described above generalizes to the case of adjoining cobor-
disms. Given two consecutive cobordisms

(f ′, f) : C ′ ⊕ C → D′, (δψ′, ψ′ ⊕−ψ)

(g, g′′) : C ⊕ C ′′ → D′′, (δψ′′, ψ ⊕−ψ′′) ,

define D to be the algebraic mapping cone C(
(

f
g

)
) and define δψ′ ∪ψ δψ′′ by the

matrix

(δψ′ ∪ψ δψ′′)s =




δψ′s 0 0
(−)n−rψsf

∗ (−)n+1−r−sTψs+1 0
0 (−)sgψs δψ′′s




: Dn+1−r−s = D′n+1−r−s ⊕ Cn−r−s ⊕D′′n+1−r−s → Dr = D′
r ⊕ Cr−1 ⊕D′′

r ,

as in the case of the union of pairs. Let iD′ : D′ → D and iD′′ : D′′ → D be the
inclusion maps, then

( iD′f
′ iD′′g

′′ ) : C ′ ⊕ C ′′ → D, (δψ′ ∪ψ δψ′′, ψ′ ⊕−ψ′′)

is a cobordism between (C ′, ψ′) and (C ′′, ψ′′). This is the union of the two cobordisms
along (C, ψ). If the two cobordisms above are Poincaré, then their union is also
Poincaré (see the next section).

Proposition. Poincaré cobordism is an equivalence relation on the set of n-dimen-
sional quadratic Poincaré complexes in A. The Poincaré cobordism classes define
an abelian group, the n-dimensional quadratic L-group of A, Ln(A) (n ≥ 0), with
addition and inverses by

[C, ψ] + [C ′, ψ′] = [C ⊕ C ′, ψ ⊕ ψ′], −[C, ψ] = [C,−ψ].

Proof: Use the construction given in the remarks above.
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3. Quadratic structures on triads

In this section we discuss quadratic structures on triads of chain complexes, and
also discuss the union operation of such structures. Before giving the definition, we
need to study several properties of the Z[Z2]-module chain map f% : W%C → W%D
induced from a chain map f : C → D in A. Here A is a fixed additive category with
involution and ε = ±1 is chosen.

Proposition. A chain homotopy k : f ' g : C → D in A induces a Z-module chain
homotopy k% : f% ' g% : W%C → W%D;

k% : (W%C)n −→ (W%D)n+1;
(ψs)s≥0 7→ (kψsf

∗ + (−)rgψsk
∗ + (−)n−rk(Tψs+1)k∗ : Dn−s+1−r → Dr)s≥0.

Remark. Note that k% depends not only on k but also on f and g and that it is
only a Z-module chain homotopy.

Proof. This is proved by a straightforward calculation. In fact,

(dW%Dk%)(ψ)s = d(kψsf
∗ + (−)r+1gψsk

∗ + (−)n−r−1kTψs+1k
∗)

+ (−)r(kψsf
∗ + (−)rgψsk

∗ + (−)n−rkTψs+1k
∗)d∗

+ (−)n−s{(kψs+1f
∗ + (−)rgψs+1k

∗ + (−)n−rkTψs+2k
∗)

+ (−)s+1((−)rfTψs+1k
∗ + kTψs+1g

∗ + (−)n−r−1kψs+2k
∗)} ,

(k%dW%C)(ψ)s = k(dψs + (−)r−1ψsd
∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1))f∗

+ (−)rg(dψs + (−)rψsd
∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1))k∗

+ (−)n−1−rk(dTψs+1 + (−)r−1Tψs+1d
∗ + (−)n−s(Tψs+2 + (−)s+2ψs+2))k∗

: Dn−s−r −→ Dr ,

and we obtain (dW%Dk% + k%dW%C)(ψ)s = gψsg
∗ − fψsf

∗ .

Proposition. If f : C → D, g : D → E are chain maps in A, then (gf)% =
g%f% : W%C → W%E.

Proof. Obvious.

Now consider a triad Γ in A:

C
f ′ //

f ′′

²²

k

&&&f&f&f&f&f&f&f
D′

g′

²²
D′′

g′′
// E .
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It induces a triad of Z[Z2]-module chain complexes

W%C
f ′% //

f ′′%
²²

k%

(((h(h(h(h(h(h(h(h
W%D′

g′%
²²

W%D′′
g′′%

// W%E .

in which f ′%,f ′′%,g′%,g′′% are Z[Z2]-module chain maps but k% : g′%f ′% ' g′′%f ′′% is
only a Z-module chain homotopy. W%Γ will denote the Z-module chain complex
C((f ′′%, g′%; k%) : W%f ′ → W%g′′). A typical (n + 2)-chain is a quadruple

(δχ, δψ′, δψ′′, ψ) ∈ (W%E)n+2 ⊕ (W%D′)n+1 ⊕ (W%D′′)n+1 ⊕ (W%C)n ,

and its boundary is:

(dδχs + (−)rδχsd
∗ + (−)n−s+1(δχs+1 + (−)s+1Tδχs+1) + (−)n+1g′δψ′sg

′∗

+ (−)n+1g′′δψ′′s g′′∗ + kψsf
′∗g′∗ + (−)rg′′f ′′ψsk

∗ + (−)n−rk(Tψs+1)k∗

: En+1−s−r → Er (r ∈ Z),

dδψ′s + (−)rδψ′sd
∗ + (−)n−s(δψ′s+1 + (−)s+1Tδψ′s+1) + (−)nf ′ψsf

′∗

: D′n−s−r → D′
r (r ∈ Z),

dδψ′′s + (−)rδψ′′s d∗ + (−)n−s(δψ′′s+1 + (−)s+1Tδψ′′s+1)− (−)nf ′′ψsf
′′∗

: D′′n−s−r → D′′
r (r ∈ Z),

dψs + (−)rψsd
∗ + (−)n−s−1(ψs+1 + (−)s+1Tψs+1)

: Cn−s−r−1 → Cr (r ∈ Z))s≥0.

ZnΓ denotes the set of n-cycles of W%Γ.

Note that (δψ′, ψ) ∈ Zn+1f
′ and (δψ′′,−ψ) ∈ Zn+1f

′′ and that we can glue
these. Let (D′ ∪C D′′, χ = δψ′ ∪−ψ δψ′′) be their union along (C,−ψ), and define a
chain map g : D′ ∪C D′′ → E in A by

g = ( g′ (−)rk −g′′ ) : D′
r ⊕ Cr−1 ⊕D′′

r → Er.

Then (δχ, χ) is an (n + 2)-dimensional quadratic structure on g : D′ ∪C D′′ → E.
The algebraic mapping cone C(g) is equal to the chain complex C(Γ) introduced in
the first section; its boundary map is expressed by the following matrix:

dC(Γ) =




dE (−)r−1g′ (−)rg′′ k
0 dD′ 0 (−)rf ′

0 0 dD′′ (−)rf ′′

0 0 0 dC




: C(Γ)r = Er ⊕D′
r−1 ⊕D′′

r−1 ⊕ Cr−2 → C(Γ)r−1 = Er−1 ⊕D′
r−2 ⊕D′′

r−2 ⊕ Cr−3.

17



Definitions. (1) An element Ψ = (δχ, δψ′, δψ′′, ψ) ∈ Zn+2Γ is called an (n + 2)-
dimensional quadratic structure on the triad Γ. The duality map DΨ : En+2−∗ → C(Γ)
is the chain map in A defined by the matirix:

DΨ =




(1 + T )δχ0 + (−)r−1kψ0k
∗

(−)n+2−r(1 + T )δψ′0g
′∗ + f ′(1 + T )ψ0k

∗

(−)n+1−r(1 + T )δψ′′0 g′′∗

(1 + T )ψ0f
′′∗g′′∗




: En+2−r → C(Γ)r = Er ⊕D′
r−1 ⊕D′′

r−1 ⊕ Cr−2 .

(2) A quadratic structure Ψ is Poincaré if the (n+1)-dimensional quadratic structures
(δψ′, ψ) on f ′ and (δψ′′,−ψ) on f ′′ are both Poincaré, and the duality map DΨ is a
chain equivalence.
(3) A pair (Γ, Ψ) of a triad Γ as above in A and an (n + 2)-dimensional quadratic
(Poincaré) structure Ψ on Γ is said to be an (n+2)-dimensional quadratic (Poincaré)
triad in A if C is n-dimensional, D′ and D′′ are (n + 1)-dimensional, E is (n + 2)-
dimensional.
(4) The pair (g : D′∪C D′′ → E, (δχ, χ)) introduced above is called the quadratic pair
associated with (Γ, Ψ).

Remarks. (1) DΨ defined above is chain homotopic to

D(δχ,χ) =
(

(1 + T )δχ0

(−)n+2−r(1 + T )χ0g
∗

)
: En+2−r → C(g)r = Er ⊕Dr−1

=




(1 + T )δχ0

(−)n−r(1 + T )δψ′0g
′∗ + f ′Tψ0k

∗

(−)n+1−r(1 + T )δψ′′0 g′′∗ − f ′′ψ0k
∗

ψ0f
′∗g′∗ + Tψ0f

′′∗g′′∗ + (−)n−r(1− T )ψ1k
∗




: En+2−r → Er ⊕D′
r−1 ⊕D′′

r−1 ⊕ Cr−2 .

A chain homotopy DΨ ' D(δχ,χ) is given by



0
0
0

(−)rψ0k
∗


 : En+2−r → Er+1 ⊕D′

r ⊕D′′
r ⊕ Cr−1.

Therefore DΨ is a chain equivalence if and only if (δχ, χ) is Poincaré.
(2) If (Γ, Ψ) is Poincaré then there is a chain equivalence D̄Ψ : C(−g′′)n+2−∗ → C(g′)
defined by:
(

(1 + T )δχ0 + (−)r−1kψ0k
∗ −g′′(1 + T )δψ′′0 + (−)nk(1 + T )ψ0f

′′∗

(−)n−r(1 + T )δψ′0g
′∗ + f ′(1 + T )ψ0k

∗ (−)n−r−1f ′(1 + T )ψ0f
′′∗

)

: C(−g′′)n+2−r = En+2−r ⊕D′′n+1−r → C(g′)r = Er ⊕D′
r−1.
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(3) Given (n + 1)-dimensional quadratic structures (δψ′,−ψ) ∈ Zn+1(f ′ : C → D′),
(δψ′′, ψ) ∈ Zn+1(f ′′ : C → D′′) and an (n + 2)-dimensional quadratic structure
(δχ, χ = δψ′ ∪ψ δψ′′) on a chain map g : D′ ∪C D′′ → E, we obtain a triad

C
f ′ //

Γ : f ′′

²²

k

&&&f&f&f&f&f&f&f&f D′

g′

²²
D′′

−g′′
// E

where g′ : D′ → E, g′′ : D′′ → E, k : g′f ′ ' −g′′f ′′ are defined by

g = ( g′ (−)rk g′′ ) : D′
r ⊕ Cr−1 ⊕D′′

r → Er ,

and (δχ, δψ′, δψ′′,−ψ) is an (n + 2)-dimensional quadratic structure on the triad Γ.

We now describe the union operation for quadratic structures. Suppose we have two
adjoining triads in A:

C
f ′ //

Γ′ : f

²²

k′

&&&f&f&f&f&f&f&f
D′

g′

²²
D −δf ′

// E′

C
f //

Γ′′ : f ′′

²²

k′′

&&&f&f&f&f&f&f&f
D

δf ′′

²²
D′′

−g′′
// E′′

and have two adjoining (n + 2)-dimensional quadratic structures on them:

Ψ′ = (δχ′, δψ′,−δψ, ψ) ∈ Zn+2Γ′ , Ψ′′ = (δχ′′, δψ, δψ′′, ψ) ∈ Zn+2Γ′′ .

Definition. The union Ψ′ ∪(δψ,ψ) Ψ′′ of Ψ′ and Ψ′′ along (δψ, ψ) is the quadratic
structure

Ψ = (δχ′ ∪(δψ,ψ) δχ′′, δψ′, δψ′′, ψ)

on the triad

C
f ′ //

Γ : f ′′

²²

k

&&&f&f&f&f&f&f&f&f D′

iE′g
′

²²
D′′

−iE′′g
′′

// E

where
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• E is the algebraic mapping cone of the chain map
(

δf ′

δf ′′

)
: D → E′ ⊕ E′′ ,

• iE′ : E′ → E and iE′ : E′ → E are the inclusion maps,
• k is a chain homotopy defined by

k =




k′

(−)rf
k′′


 : Cr → Er+1 = E′

r+1 ⊕Dr ⊕ E′′
r+1.

• δχ′ ∪(δψ,ψ) δχ′′ ∈ (W%E)n+2 is defined by

(δχ′ ∪(δψ,ψ) δχ′′)s

=




δχ′s 0 0
(−)n+1−rδψsδf

′∗ − fψsk
′∗ (−)n−r−sTδψs+1 0

(−)rk′′ψsk
′∗ (−)sδf ′′δψs + (−)n+1−sk′′ψsf

∗ δχ′′s




: En+2−s−r = E′n+2−s−r ⊕Dn+1−s−r ⊕ E′′n+2−s−r → Er = E′
r ⊕Dr−1 ⊕ E′′

r ,

and its T -dual is represented by the matrix



Tδχ′s (−)s+1δf ′Tδψs + (−)n−sk′Tψsf
∗ (−)r−1k′Tψsk

′′∗

0 (−)n+1−r−sδψs+1 (−)n−rTδψsδf
′′∗ + fTψsk

′′∗

0 0 Tδχ′′s




: En+2−s−r = E′n+2−s−r ⊕Dn+1−s−r ⊕ E′′n+2−s−r → Er = E′
r ⊕Dr−1 ⊕ E′′

r .

If (Γ′, Ψ′) , (Γ′′, Ψ′′) are (n + 2)-dimensional quadratic triads, then so is (Γ, Ψ). This
will be called the union of (Γ′,Ψ′), (Γ′′, Ψ′′) along the pair (f : C → D, (δψ, ψ)).

Proposition. If Ψ′ on Γ′ and Ψ′′ on Γ′′ are both Poincaré then the union Ψ =
Ψ′ ∪(δψ,ψ) Ψ′′ is also Poincaré.

Proof: We show that the duality map DΨ : En+2−∗ → C(Γ) is a chain equivalence.
First note that En+2−∗ has an algebraic mapping cone structure of a certain chain
map ΩE′′n+2−∗ → C(δf ′)n+2−∗, since the boundary map is expressed by the matrix




E′n+2−r Dn+1−r E′′n+2−r

E′n+3−r (−)rd∗ 0 0
Dn+2−r (−)nδf ′∗ (−)rd∗ (−)nδf ′′∗

E′′n+3−r 0 0 (−)rd∗




: C(δf ′)n+2−r ⊕ E′′n+2−r → C(δf ′)n+3−r ⊕ E′′n+3−r .
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Also note that C(Γ) has an algebraic mapping cone structure of a certain chain map
ΩC(Γ′′) → C(g′), since the boundary map is expressed by the matrix




E′
r D′

r−1 E′′
r Dr−1 D′′

r−1 Cr−2

E′
r−1 d (−)r−1g′ 0 (−)r−1δf ′ 0 k′

D′
r−2 0 d 0 0 0 (−)rf ′

E′′
r−1 0 0 d (−)r−1δf ′′ (−)r−1g′′ k′′

Dr−2 0 0 0 d 0 (−)rf

D′′
r−2 0 0 0 0 d (−)rf ′′

Cr−3 0 0 0 0 0 d




: C(g′)r ⊕ C(Γ′′)r → C(g′)r−1 ⊕ C(Γ′′)r−1 .

DΨ : En+2−r → C(Γ)r is represented by a block matirx of the form

(
α β
γ δ

)
: C(δf ′)n+2−r ⊕ E′′n+2−r → C(g′)r ⊕ C(Γ′′)r ,

where

α =
(

(1 + T )δχ′0 + (−)r−1k′ψ0k
′∗ −δf ′Tδψ0 + (−)nk′(1 + T )ψ0f

∗

(−)n−r(1 + T )δψ′0g
′∗ + f ′(1 + T )ψ0k

′∗ (−)n+1−rf ′(1 + T )ψ0f
∗

)

= D̄Ψ′ −
(

0 −δf ′δψ0

0 0

)
: E′n+2−r ⊕Dn+1−r → E′

r ⊕D′
r−1 ,

β =
(

(−)r−1k′(1 + T )ψ0k
′′∗

f ′(1 + T )ψ0k
′′∗

)
: E′′n+2−r → E′

r ⊕D′
r−1 ,

γ =




0 δf ′′δψ0

(−)n+1−rδψ0δf
′∗ (−)n+1−r(1− T )δψ1 + (−)n+1−rfψ0f

∗

0 0
0 0




: E′n+2−r ⊕Dn+1−r → E′′
r ⊕Dr−1 ⊕D′′

r−1 ⊕ Cr−2

δ =




(1 + T )δχ′′0 + (−)r−1k′′ψ0k
′′∗

(−)n−rTδψ0δf
′′∗ + f(1 + T )ψ0k

′′∗

(−)n−r(1 + T )δψ′′0 g′′∗

−(1 + T )ψ0f
′′∗g′′∗




= DΨ′′ −




0
(−)n−rδψ0δf

′′∗

0
0


 : E′′n+2−r → E′′

r ⊕Dr−1 ⊕D′′
r−1 ⊕ Cr−2 .
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The matrix




0 0 0
0 0 0
0 0 0
0 (−)r−1δψ0 0
0 0 0
0 0 0




: E′n+2−r ⊕Dn+1−r ⊕ E′′n+2−r → E′
r+1 ⊕D′

r ⊕ E′′
r+1 ⊕Dr ⊕D′′

r ⊕ Cr−1

defines a chain homotopy between DΨ and the chain equivalence

( D̄Ψ′ β
O DΨ′′

)
: C(δf ′)n+2−r ⊕ E′′n+2−r → C(g′)r ⊕ C(Γ′′)r .

Therefore DΨ is also a chain equivalence and Ψ is Poincaré.

Unions of pairs and unions of cobordisms are special cases of the above. For
example take adjoining (n + 1)-dimensional Poincaré cobordisms:

(f ′, f) : C ′ ⊕ C → D′, (δψ′, ψ′ ⊕−ψ)

(g, g′′) : C ⊕ C ′′ → D′′, (δψ′′, ψ ⊕−ψ′′)

These can be viewed as adjoining quadratic Poincaré triads:

0 //

²²

0

&&&f&f&f&f&f&f&f C ′

f ′

²²
C −f

// D′

0 //

²²

0

&&&f&f&f&f&f&f&f&f C

g

²²
C ′′ −g′′

// D′′

(δψ′, ψ′,−ψ, 0) (δψ′′, ψ,−ψ′′, 0)

The union of cobordisms described in the previous section is equal to the pair associ-
ated with the union of these triads.
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4. Homotopy equivalences

In this section we discuss homotopy equivalences of quadratic complexes and pairs.
We fix an additive category A with involution and ε = ±1 as before.

Definition. A map (resp. homotopy equivalence) of n-dimensional quadratic com-
plexes in A

f : (C, ψ) → (C ′, ψ′)

is a chain equivalence f : C → C ′ in A such that

f%(ψ) = ψ′ ∈ ZnC ′ .

Proposition. If f : (C, ψ) → (C ′ψ′) is a map of n-dimensional quadratic complexes
in A, then

( f 1 ) : C ⊕ C ′ → C ′, (0, ψ ⊕−ψ′)

is a cobordism between (C,ψ) and (C,ψ′). If (C, ψ) is Poincaré and f is a homotopy
equivalence, then the cobordism is also Poincaré.

Proof: It is easy to check that (0, ψ⊕−ψ′) defines an (n + 1)-dimensional quadratic
structure on ( f 1 ). Its duality map D : C ′n+1−∗ → C(( f 1 )) is the composite of
the following four chain maps

C ′n+1−∗ f∗−−→ Cn+1−∗ −→∼= S(Cn−∗)
SDψ−−−→ SC

t( 0 1 −f )−−−−−−−−−−→ C(( f 1 )) .

The second map is the isomorphism given in section 2. If f is a chain equivalence,
then the first map is also a chain equivalence. If ψ is Poincaré, then the third map is
a chain equivalence. The fourth map is always a chain equivalence.

Definition. A map of (n + 1)-dimensional quadratic pairs in A
(f : C → D, (δψ, ψ)) → (f ′ : C ′ → D′, (δψ′, ψ′))

is a chain complex triad in A

C
f //

Γg,h,k : g

²²

k

&&&f&f&f&f&f&f&f
D

h

²²
C ′

f ′
// D′

such that (g%, h%; k%)(δψ) = (δψ′, ψ′); i.e.

ψ′s = gψsg
∗ : C ′n−r−s → C ′r

δψ′s = hδψsh
∗ + (−)n+1(kψsf

∗h∗ + (−)rf ′gψsk
∗ + (−)n−rtTψs+1k

∗)

: D′n+1−s−r → D′
r .

Such a map is a homotopy equivalence if the chain maps g and h are chain equivalences.
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Proposition. Let Γg,h,k : (f : C → D, (δψ, ψ)) → (f ′ : C ′ → D′, (δψ′, ψ′)) be
a homotopy equivalence of (n + 1)-dimensional quadratic pairs in A. If (δψ, ψ) is
Poincaré, then so is (δψ′, ψ′).

Proof: The duality map D(δψ′,ψ′) is given by the matrix

(
(1 + T )δψ′0

(−)n+1−r(1 + T )ψ′0f
′∗

)
: D′n+1−r → C(f ′)r = D′

r ⊕ C ′r−1 ,

and there are identities

(1 + T )δψ′0 = h(1 + T )δψ0h
∗ + (−)n+1{kψ0f

∗h∗ + kTψ0g
∗f ′∗

+ (−)r(f ′gψ0k
∗ + hfTψ0k

∗) + (−)n+1−rk(1− T )ψ1k
∗} ,

(−)n+1−r(1 + T )ψ′0f
′∗ = (−)n+1−rg(1 + T )ψ0g

∗f ′∗ .

This map is chain homotopic to the following composite of three chain equivalences

D̂ : D′n+1−∗ h∗−−→
'

Dn+1−∗ D(δψ,ψ)−−−−−→
'

C(f)
(g,h;k)−−−−→
'

C(f ′) ,

which can be expressed by the matirx

(
h(1 + T )δψ0h

∗ + (−)n+1k(1 + T )ψ0f
∗h∗

(−)n+1−rg(1 + T )ψ0f
∗h∗

)
: D′n+1−r → D′

r ⊕ C ′r−1 .

The matrix (
(−)n−rkTψ0k

∗

(−)n+1g(1 + T )ψ0k
∗

)
: D′

n+1−r → D′
r+1 ⊕ C ′r

defines a desired chain homotopy D̂ ' D(δψ′,ψ′) .

Proposition. Suppose that Γg,h,k : (f : C → D, (δψ, ψ)) → (f ′ : C ′ → D′, (δψ′, ψ′))
is a homotopy equivalence of (n+1)-dimensional quadratic pairs in A and that (δψ, ψ)
is Poincaré. Then there is an (n + 2)-dimensional quadratic Poincaré triad

C ⊕ C ′
f⊕f ′ //

Γ : (g 1)

²²

(k 0)

(((h(h(h(h(h(h(h(h(h
D ⊕D′

(h 1) , (0, δψ ⊕−δψ′, 0, ψ ⊕−ψ′)
²²

C ′
f ′

// D′
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Proof: We show that the duality map D for the triad is a chain equivalence. The
rest of the proof is straightforward.

The bondary map for C(Γ) is expressed by the following matrix.




D′
r Dr−1 D′

r−1 C ′r−1 Cr−2 C ′r−2

D′
r−1 dD′ (−)r−1h (−)r−1 (−)rf ′ k 0

Dr−2 0 dD 0 0 (−)rf 0
D′

r−2 0 0 dD′ 0 0 (−)rf ′

C ′r−2 0 0 0 dC′ (−)rg (−)r

Cr−3 0 0 0 0 dC 0
C ′r−3 0 0 0 0 0 dC′




Therefore, we have a chain equivalence p : C(Γ) → SC(f ′) ;

(
0 0 1 0 0 0
0 0 0 0 0 1

)
: D′

r ⊕Dr−1⊕D′
r−1⊕C ′r−1⊕Cr−2⊕C ′r−2 → D′

r−1⊕C ′r−2 .

The duality map D is expressed by the following matrix.




D′n+2−r

D′
r (−)r−1kψ0k

∗

Dr−1 (−)n−r(1 + T )δψ0h
∗ + f(1 + T )ψ0k

∗

D′
r−1 (−)n+1−r(1 + T )δψ′0

C ′r−1 0
Cr−2 (1 + T )ψ0g

∗f ′∗

C ′r−2 −(1 + T )ψ′0f
′∗




Therefore the following diagram commutes.

D′n+2−∗ D //

∼=
²²

C(Γ)

p'
²²

S(D′n+1−∗) D(δψ′,ψ′)

' // SC(f ′)

where the left vertical arrow is the isomorphism given in section 2. Therefore D is a
chain equivalence.
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5. Algebraic surgery

In this section we review the algebraic surgery on quadratic complexes.

6. Splitting for quadratic Poincaré pairs

In this section we describe a method to split Poincaré pairs into two Poincaré triads.
As before we fix an additive category A with involution and ε = ±1.

Let c = (f : C → D, (δψ, ψ)) be an (n + 1)-dimensional quadratic Poincaré pair
in A, and C ′, D′ be subcomplexes of C,D respectively. Recall that we are fixing
identification

C = C(ρC : Ω(C/C ′) → C ′),

D = C(ρD : Ω(D/D′) → D′),

for some suitable chain maps ρC and ρD and that we have the following inclusion
maps and projection maps:

C ′r
iC−−−→←−−−
qC

Cr = C ′r ⊕ (C/C ′)r

pC−−−→←−−−
jC

(C/C ′)r,

D′
r

iD−−−→←−−−
qD

Dr = D′
r ⊕ (D/D′)r

pD−−−→←−−−
jD

(D/D′)r.

Note that jC , qC , jD, and qD may not be chain maps in general and that we have the
following identities:

ρC = (−)rqCdCjC : (C/C ′)r+1 → C ′r ,

ρD = (−)rqDdDjD : (D/D′)r+1 → D′
r .

We assume that pDfiC = 0, i.e. f : C → D can be expressed by the matrix:

(
f ′ ξ
0 f̄

)
: Cr = C ′r ⊕ (C/C ′)r −−→D′

r ⊕ (D/D′)r = Dr .

The two maps f ′ : C ′ → D′ and f̄ : C/C ′ → D/D′ are chain maps, but in general
ξ = qDfjC : C/C ′ → D′ is not a chain map. There is an identity

dD′ξ + (−)r−1ρDf̄ = (−)r−1f ′ρC + ξdC/C′ : (C/C ′)r → D′
r−1

for each r.
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We define an n-dimensional chain complex C ′′ by (C/C ′)n−∗, and an (n + 1)-
dimensional chain complex D′′ by C(f̄)n+1−∗. The boundary map for D′′ is given by
the matrix:(

(−)rd∗D/D′ 0
(−)n+1f̄∗ (−)rd∗C/C′

)
: D′′

r = C(f̄)n+1−r = (D/D′)n+1−r ⊕ (C/C ′)n−r

−−−−→ D′′
r−1 = C(f̄)n+2−r = (D/D′)n+2−r ⊕ (C/C ′)n+1−r,

and, therefore, C ′′ = (C/C ′)n−∗ is a subcomplex of D′′. We denote the inclusion map
by f ′′ : C ′′ → D′′.

Recall that the duality maps Dψ : Cn−∗ → C and D̄(δψ,ψ) : C(f)n+1−∗ → D are
defined by

Dψ = (1 + T )ψ0 : Cn−r −−→ Cr,

D̄(δψ,ψ) = ((1 + T )δψ0, f(1 + T )ψ0) : C(f)n+1−r = Dn+1−r ⊕ Cn−r −−→ Dr.

The projections pC : C → C/C ′ and pD : D → D/D′ induce a chain map p : C(f) →
C(f̄):

p = pD ⊕ pC : C(f)r = Dr ⊕ Cr−1 −−→ (D/D′)r ⊕ (C/C ′)r−1 = C(f̄)r.

Consider the following commutative diagram:

C ′
iC //

f ′

²²

C

f

²²

C ′′
Dψp∗Coo

f ′′

²²
D′

iD

// D D′′
D̄(δψ,ψ)p

∗
oo

and define chain complexes B and C ! as the pull-backs of the two rows:

B = ΩC( (iC , Dψp∗C) : C ′ ⊕ C ′′ → C ),

C ! = ΩC( (iD, D̄(δψ,ψ)p
∗) : D′ ⊕D′′ → D ).

Then we have a chain map g! : B → C !:

g! = f ′ ⊕ f ⊕ f ′′ : Br = C ′r ⊕ Cr+1 ⊕ C ′′r −−→ C !
r = D′

r ⊕Dr+1 ⊕D′′
r .

Define an n-dimensional quadratic structure (δψ̄,−ψ̄) on g! : B → C ! as follows:

δψ̄s =








0 0 0
0 (−)n−r−sTδψs−1 0
0 0 0


 (s > 0)




0 qD(1 + T )δψ0 (−)nr+rρ′

0 0 (−)nr+r+1j′

0 0 0


 (s = 0)

: C !n−r−s = D′n−r−s ⊕Dn+1−r−s ⊕D′′n−r−s−−→ C !
r = D′

r ⊕Dr+1 ⊕D′′
r ,
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ψ̄s =








0 0 0
0 (−)n−r−s−1Tψs−1 0
0 0 0


 (s > 0)




0 qC(1 + T )ψ0 (−)nrρC

0 0 (−)nr+1jC

0 0 0


 (s = 0)

: Bn−1−r−s = C ′n−1−r−s ⊕ Cn−r−s ⊕ C ′′n−1−r−s−−→ Br = C ′r ⊕ Cr+1 ⊕ C ′′r ,

where
ρ′ = (ρD, ξ) : D′′n−r = (D/D′)r+1 ⊕ (C/C ′)r −−→ D′

r,

j′ = (jD, 0) : D′′n−r = (D/D′)r+1 ⊕ (C/C ′)r −−→ Dr+1.

Proposition. The structure (δψ̄,−ψ̄) on g! is Poincaré.

Proof: We will show that the duality map D(δψ̄,−ψ̄) : (C !)n−∗ → C(g!) is a chain
equivalence.

The boundary map for C ! is given by the matrix



dD (−)n−r+1iD (−)n−r+1(1 + T )δψ0p
∗
D (−)n−r+1f(1 + T )ψ0p

∗
C

0 d′D 0 0
0 0 (−)n−r+1(dD/D′)∗ 0
0 0 (−)n+1f̄∗ (−)n−r+1(dC/C′)∗




: C !
n−r+1 = Dn−r+2 ⊕D′

n−r+1 ⊕ (D/D′)r ⊕ (C/C ′)r−1

−→ C !
n−r = Dn−r+1 ⊕D′

n−r ⊕ (D/D′)r+1 ⊕ (C/C ′)r ,

and hence the boundary map for (C !)n−∗ is represented by the matrix



(−)n+1dD/D′ (−)n+1−rf̄ (−)n+1+nrεpD(1 + T )δψ0 0
0 (−)n+1dC/C′ (−)nr+rεpC(1 + T )ψ0f

∗ 0
0 0 (−)rd∗D 0
0 0 (−)n+1i∗D (−)rd∗D′




: (C !)n−r = (D/D′)r+1 ⊕ (C/C ′)r ⊕Dn+1−r ⊕D′n−r

−→ (C !)n−r+1 = (D/D′)r ⊕ (C/C ′)r−1 ⊕Dn+2−r ⊕D′n+1−r .

to be completed later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

[Old proof] The following proof uses a different definiton of duality maps and needs
to be rewritten.
We will show that the duality map D(δψ̄,−ψ̄) : C(g!)n−∗ → C ! is essentially built up of
four chain equivalences:

0 : C(ε̄) → 0

βD = t ( jD −ρD ) : D/D′ → C(iD)

β∗D = ( j∗D −ρ∗D ) : C(iD)n+1−∗ → (D/D′)n+1−∗

β∗C = ( j∗C −ρ∗C ) : C(iC)n−∗ → (C/C ′)n−∗

28



where ε̄ is an isomorphism of a certain chain complex to itself described below.
We first describe how to combine the first two chain equivalences. Define a chain

map ε : (−)n+1 • Ω2C(f̄) → (−)n • Ω(C/C ′) by

εr = ( 0 (−)n−r ) : (D/D′)r+2 ⊕ (C/C ′)r+1 → (C/C ′)r+1 .

The boundary map of A = C(ε) is given by the matrix:



(−)ndC/C′ 0 (−)n

0 (−)n+1dD/D′ (−)n+1−rf̄
0 0 (−)n+1dC/C′


 : (C/C ′)r+1 ⊕ (D/D′)r+1 ⊕ (C/C ′)r

→ (C/C ′)r ⊕ (D/D′)r ⊕ (C/C ′)r−1 .

Therefore A can be identified with the chain complex

ΩC(f̂ : C( ε̄ : (−)n+1 • Ω(C/C ′) → (−)n • Ω(C/C ′) ) → (−)n+1 • (D/D′)) ,

where
ε̄r = (−)n−r : (C/C ′)r+1 → (C/C ′)r+1 ,

f̂r = ( 0 (−)n+1f̄ ) : (C/C ′)r+1 ⊕ (C/C ′)r → (D/D′)r .

Since ε̄ is an isomorphism, C(ε̄) is contractible. In fact,

γ =
(

0 0
(−)r ε̄r 0

)
: (C/C ′)r+1 ⊕ (C/C ′)r → (C/C ′)r+2 ⊕ (C/C ′)r+1

is a chain contraction of C(ε̄), and we have a triad

C(ε̄) f̂ //

²²

k

&&&f&f&f&f&f&f&f&f&f&f&f
(−)n+1 • (D/D′)

δ∼= ²²
D/D′

βD²²
0 // C(iD)

where δr = (−)(n+1)(r−1) : (D/D′)r → (D/D′)r and k is a chain homotopy : βDδf̂ '
0. The most obvious choice for k may be −βDδf̂γ, but we use the chain homotopy

k =
(

(−)nr−rfjC 0
(−)nr−r−1f ′ρC (−)nrξ

)
: (C/C ′)r+1 ⊕ (C/C ′)r → Dr+1 ⊕D′

r

instead. This triad induces a chain equivalence

(0, βDδ; k) = ( βDδ (−)rk ) : C(f̂)r = (D/D′)r ⊕ C(ε̄)r−1 → C(iD)r
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We denote the skew desuspension of this by BA : A → ΩC(iD):

BA = (−βDδ (−)r+1k ) : Ar = (D/D′)r+1 ⊕ C(ε̄)r → ΩC(iD)r .

We next describe how to combine the two chain equivalences β∗C and β∗D. Consider
the following triad :

C(iD)n+1−∗ F //

−β∗D
²²

h

)))i)i)i)i)i)i)i)i)i
SC(iC)n−∗

−Sβ∗C
²²

(D/D′)n+1−∗
G

// S(C/C ′)n−∗

where

Fr = (−)n−r(f∗ ⊕ f ′∗) : Dn+1−r ⊕D′n−r → Cn+1−r ⊕ C ′n−r ,

Gr = (−)n+1−rf̄∗ : (D/D′)n+1−r → (C/C ′)n+1−r ,

h = ( 0 (−)r−1ξ∗ ) : Dn+1−r ⊕D′n−r → (C/C ′)n−r .

Since the two vertical maps are chain equivalences, this diagram induces a chain
equivalence C(F ) → C(G), and hence a chain equivalence

BA′ : A′ = Ω2C(F ) = C(Ω2F ) → Ω2C(G) .

To combine BA and BA′ , we need to find suitable maps between the sources and
the targets respectively.

The map A′ → A between the sources is the chain map induced by the following
triad:

Ω2C(iD)n+1−∗ Ω2F //

²²

0

***j*j*j*j*j*j*j*j*j*j
ΩC(iC)n−∗

²²
(−)n+1 • Ω2C(f̄) ε

// (−)n • Ω(C/C ′)

where the two vertical maps are defined by:

(−)(n+1)(r+1)+1

(
pD(1 + T )δψ0 0

(−)n+1−rpC(1 + T )ψ0f
∗ 0

)

: Dn+1−r ⊕D′n−r → (D/D′)r ⊕ (C/C ′)r−1

(−)nr+1 ( pC(1 + T )ψ0 0 ) : Cn+1−r ⊕ C ′n−r → (C/C ′)r−1 .

A direct calculation shows that the algebraic mapping cone of this chain map is equal
to C(g!)n−∗.
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The map Ω2C(G) → ΩC(iD) between the targets is the composition:

Ω2C(G) = ΩC(f̄)n+1−∗ Ωp∗−−→ ΩC(f)n+1−∗ ΩD(δψ,ψ)−−−−−−→ ΩD
Ω(inclusion)−−−−−−−−→ ΩC(iD) ,

and its algebraic mapping cone is equal to C !.
Now we can fit BA and BA′ together using the following triad to obtain a chain

equivalence from C(g!)n−∗ → C !:

A′ //

BA′
²²

H

(((h(h(h(h(h(h(h(h(h A

BA

²²
Ω2C(G) // ΩC(iD)

where the chain homotopy H is defined by
(−f(1 + T )ψ0q

∗
C 0 (1 + T )δψ0g

∗
D 0

0 (−)r+1f ′qC(1 + T )ψ0 0 (−)rqD(1 + T )δψ0

)

: C ′n−r ⊕ Cn−r−1 ⊕D′n−r−1 ⊕Dn−r → Dr+2 ⊕D′
r+1 .

A direct calculation shows that this chain equivalence is in fact equal to the duality
map D(δψ̄,−ψ̄) : C(g!)n−∗ → C !. Therefore (δψ̄,−ψ̄) is Poincaré.

Remark. The actual calculation was done in the reverse order. We first wrote down
the duality map and the boundary homomorphisms of C(g!)n−∗ and C ! in the form
of matrices. Then we observed how the duality map is built up of chain equivalences.

[End of the Old Proof]

Now we have two (n + 1)-dimensional quadratic triads in A:

B
−g′ //

Γ′ : g!

²²

0

&&&f&f&f&f&f&f&f
C ′

f ′

²²
C !

−δg′
// D′

B
g!

//

Γ′′ : g′′

²²

0

&&&f&f&f&f&f&f&f
C !

δg′′

²²
C ′′

f ′′
// D′′

Ψ′ = (0, 0, δψ̄, ψ̄) Ψ′′ = (0,−δψ̄, 0, ψ̄) ,

where g′ : B → C ′, g′′ : B → C ′′, δg′ : C ! → D′, and δg′′ : C ! → D′′ are the
projections.

Proposition. The quadratic triads (Γ′,Ψ′) and (Γ′′, Ψ′′) are Poincaré.
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Glueing these together, we obrtain a quadratic Poincaré triad.

B
−g′ //

g′′

²²

k

&&&f
&f&f&f&f&f&f&f C ′

i′f ′

²²
C ′′

i′′f ′′
// D̄

where D̄ is the algebraic mapping cone C(
(−δg′

δg′′

)
: C ! → D′ ⊕ D′′), i′ : D′ → D̄,

i′′ : D′′ → D̄ are the inclusion maps, and k is the chain homotopy t ( 0 (−)rg! 0 ) :
Br → D′

r ⊕ C !
r−1 ⊕D′′

r . It then induces a quadratic Poincaré pair

( f̄ : C̄ = C(
(−g′

g′′

)
: B → C ′ ⊕ C ′′) → D̄ , (0 ∪δψ̄ 0, 0 ∪ψ̄ 0) )

f̄ = f ′ ⊕ g! ⊕ (−f ′′) : C ′r ⊕Br−1 ⊕ C ′′r → D′
r ⊕ C !

r−1 ⊕D′′
r .

Proposition. This pair is homotopy equivalent to the original pair (f : C →
D, (δψ, ψ)).

Proof: The inclusion maps

ı̄C = t ( 0 0 1 0 0 ) : C → C̄

ı̄D = t ( 0 0 1 0 0 ) : D → D̄

are chain equivalences and the commutative diagram

C
f //

ı̄C

²²

D

ı̄D

²²
C̄

f̄

// D̄

gives the desired homotopy equivalence.
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