SMITH SET FOR A FINITE PERFECT GROUP

TOSHIO SUMI

ABSTRACT. Let G be a finite group. Two G-modules U and V are called Smith equivalent if there is a smooth action on a sphere with just two fixed points x and y such that U (resp. V) is equivalent to the tangential G-module over x (resp. y). A Smith set Sm(G) is a subset of the real representation ring RO(G) consisting of all U - V such that U and V are Smith equivalent G-modules.

Now we let G be a finite perfect group. It is completely known a perfect group G so that Sm(G) is not trivial. Let $\mathcal{P}(G)$ be the set of subgroups of G of prime power order and $\mathcal{P}_{odd}(G)$ the set of subgroups of odd prime power order. Further let $RO(G)^{\{G\}}$ be the subgroup of RO(G) consisting of U - V with $\dim(U) =$ $\dim(V)$. For a set \mathcal{F} of subgroups of G, we denote by $RO(G)^{\{G\}}_{\mathcal{F}}$ the subgroup of $RO(G)^{\{G\}}$ consisting of U - V such that U and Vare isomorphic as a P-module for any $P \in \mathcal{F}$. Then $RO(G)^{\mathcal{L}(G)}_{\mathcal{P}(G)} \subset$ $Sm(G) \subset RO(G)^{\{G\}}_{\mathcal{P}_{odd}(G)}$. Further if a finite perfect group G has no element of order 8 then $Sm(G) = RO(G)^{\{G\}}_{\mathcal{P}(G)}$. In this talk we treat finite perfect groups G of small order and discuss whether $Sm(G) = RO(G)^{\{G\}}_{\mathcal{P}(G)}$.

Faculty of Design, Kyushu University, Shiobaru 4-9-1, Fukuoka, 815-8540, Japan

E-mail address: sumi@design.kyushu-u.ac.jp

²⁰⁰⁰ Mathematics Subject Classification. 57S17, 20C15.

Key words and phrases. Smith equivalent, real representation space, perfect group.