Squeezing on a Certain L-space

岡山理科大学・理学部 山崎 正之 (Masayuki Yamasaki) Faculty of Science, Okayama University of Science

1. Introduction

In a joint 2006 paper [2], E. Pedersen and I proved a certain stability result for controlled L-groups. The proof depended on a construction called the Alexander trick. In this note I describe a modified Alexander trick which can be used to give a built-in squeezing mechanism of a certain \mathbb{L} -space. This should replace the "barycentric subdivision argument" used in [4].

2. Iterated Mapping Cylinders

Let X be a finite polyhedron, and M be a topological space. We are interested in a map $p: M \to X$ which has an iterated mapping cylinder decomposition in the sense of Hatcher [1]: there is a partial order on the set of the vertices of X such that, for each simplex Δ of X,

(1) the partial order restricts to a total order of the vertices of Δ

$$v_0 < v_1 < \cdots < v_n$$

(2) $p^{-1}(\Delta)$ is the iterated mapping cylinder of a sequence of maps

$$F_{v_0} \longrightarrow F_{v_1} \longrightarrow \ldots \longrightarrow F_{v_n}$$
,

(3) the restriction $p|p^{-1}(\Delta)$ is the natural map induced from the iterated mapping cylinder structure of $p^{-1}(\Delta)$ above and the iterated mapping cylinder structure of Δ coming from the sequence

$$\{v_0\} \longrightarrow \{v_1\} \longrightarrow \ldots \longrightarrow \{v_n\}$$
.

To simplify the situation we assume that X is an n-simplex Δ with vertices v_0, v_1, \ldots, v_n . The edge $|v_0, v_1|$ is the mapping cylinder $v_0 \times \{0 \le t_1 \le 1\}/(v_0, 1) \sim v_1$, the face $|v_0, v_1, v_2|$ is the mapping cylinder $|v_0, v_1| \times \{0 \le t_2 \le 1\}/(x, 1) \sim v_2, \ldots$, and $\Delta = |v_0, \ldots, v_n|$ is the mapping cylinder $|v_0, \ldots, v_{n-1}| \times \{0 \le t_n \le 1\}/(x, 1) \sim v_n$. Thus we can assign a point in Δ to each $(t_1, \ldots, t_n) \in [0, 1]^n$. (t_1, \ldots, t_n) is pseudocoordinates of the point in the sense that the coordinates are not uniquely determined by the point. If $(\lambda_0, \ldots, \lambda_n)$ are the barycentric coordinates of a point $x \in \Delta$, i.e.

 $x = \sum \lambda_i v_i \ (\lambda_0 + \dots + \lambda_n = 1)$, then t_i is equal to $\lambda_i / (\lambda_0 + \dots + \lambda_i)$, when defined, and is indeterminate when $\lambda_0 = \dots = \lambda_i = 0$.

For each vertex v of Δ , define a simplicial map $s^v : \Delta \to \Delta$ by:

$$s^{v}(u) = \begin{cases} v & \text{for a vertex } u \text{ with } u < v \ , \\ u & \text{for a vertex } u \text{ with } u \ge v \ . \end{cases}$$

For example, s^{v_0} is the identity map, and s^{v_n} is the constant map which sends every point of Δ to v_n . A strong deformation retraction $s_t^v: \Delta \to \Delta$ is defined by $s_t^v(x) = (1-t)x + t s^v(x)$, where $x \in \Delta$ and $t \in [0,1]$. Note that this strong deformation retraction s_t^v is covered by a deformation \tilde{s}_t^v on M, since M has an iterated mapping cylinder structure. Also note that $s_t^{v_j}$ (t > 0) changes the t_j pseudo-coordinate but fixes the other pseudo-coordinates t_i $(i \neq j)$.

3. Alexander Tricks

Let M be an iterated mapping cylinder of maps

$$F_{v_0} \longrightarrow F_{v_1} \longrightarrow \ldots \longrightarrow F_{v_n}$$
,

and $p: M \to \Delta = |v_0, \ldots, v_n|$ be the projection from M to the ordered n-simplex Δ as in the previous section. Suppose c is a quadratic Poincaré (n+2)-ad on $p: M \to \Delta$, such that $\partial_i c$ is a quadratic Poincaré (n+1)-ad on $p|p^{-1}(\partial_i \Delta)$, $i = 0, \ldots, n$ ([4] [5]). Such an (n+2)-ad c is said to be proper on Δ or simply proper.

We will describe a version of Alexander trick for such a proper (n+2)-ad c. First fix a positive integer N ("height") and pick up a vertex $v=v_j$ of Δ toward which we try to squeeze the objects. Triangulate the closed interval $I_N=[0,N]$ using unit intervals and represent each simplex by its barycenter. Use these points to construct the symmetric Poincaré triad e of $(I_N;0,N)$. Take the tensor product of c and e and denote it by $c \times I_N$. This is a geometric object on $M \times I_N$ which gives a cobordism between $c \times 0$ and the (n+2)-ad c' defined by:

$$c' = c \times N \cup \partial_j c \times I_N,$$

$$\partial_i c' = \begin{cases} \partial_i c \times N \cup \partial_{j-1} \partial_i c \times I_N & \text{if } i < j, \\ \partial_j c \times 0 & \text{if } i = j, \\ \partial_i c \times N \cup \partial_j \partial_i c \times I_N & \text{if } i > j. \end{cases}$$

So this construction does not change the j-th face $\partial_j c = \partial_j c \times 0$. If $i \neq j$, then one can perform the same construction to $\partial_i c$ to get $(\partial_i c)'$, which coincides with $\partial_i c'$.

Define maps $S_N^v: \Delta \times I_N \to \Delta \times I_N$ and $\widetilde{S}_N^v: M \times I_N \to M \times I_N$ by

$$S^v_N(x,t) = (s^v_{t/N}(x),t) \ \ \text{and} \ \ \widetilde{S}^v_N(w,t) = (\tilde{s}^v_{t/N}(w),t) \ .$$

Define an ordered (n+1)-simplex Δ^{n+1} ($\subset \Delta \times I_N$) by

$$\Delta^{n+1} = (\langle v_0, \dots, v_i \rangle \times 0) * (\langle v_i \rangle \times N) * (\langle v_{i+1}, \dots, v_n \rangle \times 0) .$$

Here * denotes the join of simplices. Note that

$$S_N^v(\Delta \times I_N) = \bigcup_{0 \le t \le N} (s_{t/N}^v(\langle v_0, \dots, v_j \rangle \times t) * (\langle v_{j+1}, \dots, v_n \rangle \times t) ,$$

$$\Delta^{n+1} = \bigcup_{0 \le t \le N} (s_{t/N}^v(\langle v_0, \dots, v_j \rangle \times t) * (\langle v_{j+1}, \dots, v_n \rangle \times 0).$$

Therefore, the obvious vertical retraction

$$\langle v_{i+1}, \dots, v_n \rangle \times I_N \longrightarrow \langle v_{i+1}, \dots, v_n \rangle \times 0$$

induces a map R_N^v from the image $S_N^v(\Delta \times I_N)$ to Δ^{n+1} . Let

$$q = p \times 1_{I_N} | : M_{\Delta^{n+1}} = (p \times 1_{I_N})^{-1} (\Delta^{n+1}) \to \Delta^{n+1}$$

denote the pull-back of $p: M \to \Delta$ by the projection map

$$\pi: \Delta^{n+1} \xrightarrow{\text{inclusion}} \Delta \times I_N \xrightarrow{\text{projection}} \Delta$$
.

The map R_N^v is covered by a map $\widetilde{R}_N^v:\widetilde{S}_N^v(M\times I_N)\to M_{\Delta^{n+1}}.$

Let us look at the relation between c and c' (and its functorial image $(\widetilde{R}_N^v \circ \widetilde{S}_N^v)_*(c')$) more closely. As in the pictures above, define a subset Δ' of $\partial(\Delta \times I_N)$ by

$$\Delta' = \Delta \times N \cup \partial_j \Delta \times I_N .$$

The (n+2)-ad c' lies over Δ' . By glueing some of the faces, let us regard $c \times I_N$ as an (n+3)-ad whose faces are

$$\partial_0 c \times I_N, \ldots, \partial_{i-1} c \times I_N, c', c \times 0, \partial_{i+1} c \times I_N, \ldots, \partial_n c \times I_N$$
.

The functorial image of this (n+3)-ad by the composition $\widetilde{R}_N^v \circ \widetilde{S}_N^v$ defines a proper quadratic Poincaré (n+3)-ad $\mathcal{C}_N^v(c)$ on $q: M_{\Delta^{n+1}} \to \Delta^{n+1}$.

The face $(\widetilde{R}_N^v \circ \widetilde{S}_N^v)_*(c')$ is a proper quadratic Poincaré (n+2)-ad on $q|q^{-1}(R_N^v(S_N^v(\Delta')),$ and is denoted $A_N^v(c)$. Its functorial image $\pi_*(A_N^v(c))$ will be denoted $a_N^v(c)$. It is a proper on Δ . The functorial image $\pi_*(\mathcal{C}_N^v(c))$ can be regarded as a Poincaré cobordism between c and $a_N^v(c)$. The operation described above is called the Alexander trick (of height N) at the vertex $v = v_j$. Note that $a_N^v(c)$ has a fine control in the t_j pseudo-coordinate. Also note that $\partial_j a_N^v(c) = a_N^v(\partial_j c) = \partial_j c$, where $v = v_j$.

If we successively apply the Alexander tricks at v_n, \ldots, v_1, v_0 to the given proper quadratic Poincaré (n+2)-ad c, then we get finely controlled object which is cobordant to c. This process is called "squeezing" of "shrinking". When we use the same height N at every vertex, then the squeezed object obtained from c will be denoted $S_N(c)$:

$$S_N(c) = a_N^{v_0}(a_N^{v_1}(\dots(a_N^{v_n}(c))\dots))$$
.

The cobordism between c and $S_N(c)$ constructed above is called the *standard cobordism*. The squeezing operation S_N preserves the face relation:

Proposition 3.1. $\partial_i S_N(c)$ is equal to $S_N(\partial_i c)$. Furthermore, the standard cobordism between $\partial_i c$ and $\partial_i S_N(c)$ is equal to the standard cobordism between $\partial_i c$ and $S_N(\partial_i c)$.

4. L-SPACES

The squeezing operation seems to justify the following simple definition of the **coefficient L-space** $\mathbb{L}_n(p:M\to X)$ for the generalized homology $H_*(X;\mathbb{L}(p))$, where $p:M\to X$ is a map from a space to a finite polyhedron which has an iterated mapping cylinder decomposition and n is an integer. It is a Δ -set; a k-simplex is an (n+k)-dimensional proper quadratic Poincaré (k+2)-ad $(c;\partial_0c,\ldots,\partial_kc)$ on the pullback $\pi^*M\to(\Delta;\partial_0\Delta,\ldots,\partial_k\Delta)$, where Δ is a k-simplex and $\pi:\Delta\to\Delta^l$ is an affine surjection from Δ to an l-dimensional simplex Δ^l of X $(l\leq k)$ induced by an order (\leq) preserving map between the vertices.

Two such simplices $(c, \pi : \Delta \to \Delta^l)$ and $(c', \pi' : \Delta' \to \Delta^l)$ are identified when there is an affine homeomorphism $\phi : \Delta \to \Delta'$ of ordered simplices such that $\pi = \pi' \circ \phi$ and $\phi_*(c) = c'$.

Note that the squeezing operation S_N defines a simplicial homotopy of the identity map of $\mathbb{L}_n(p:M\to X)$ to a simplicial map whose image is contained in a subset made up of simplices of 'small radius' measured on X, if N is large. Thus this space has a built-in 'squeezing' mechanism.

Let us consider the special case when X is a single point. There is a similar Δ -set $\mathbb{L}'_n(M)$ whose k-simplex is an (n+k)-dimensional quadratic Poincaré (k+2)-ad c on M that is special, i.e. $\partial_0\partial_1...\partial_k c$ is 0. $\pi_0(\mathbb{L}'_n(p:M\to *))$ is isomorphic to $L_n^h(\mathbb{Z}\pi_1(M))$.

There is a map $\mathbb{L}_n(M \to *) \to \mathbb{L}'_n(M)$ that sends a k-simplex (c, π) to its functorial image $\pi_*(c)$. A map in the reverse direction can be constructed as follows. Let c be a k-simplex of $\mathbb{L}'_n(M)$. It is made up of three type of things: (1) 'points' in M (generators of free modules), (2) paths with coefficients connecting the generators, and (3) homotopies of certain paths. Since c is special, one can make a 1–1 correspondence between its faces (including c itself) and the faces of a standard k-simplex Δ (including Δ itself), and can make copies of the faces of c on the sets {barycenters} $\times M \subset \Delta \times M$ and realizing the morphisms between adjacent pieces by using the original paths in c in the M-direction and the path connecting two adjacent barycenters in the Δ -direction as components. Similarly for homotopies of paths. These are homotopy inverses of each other.

Therefore, $\mathbb{L}_n(p:M\to X)$ defined above may give a convenient description of \mathbb{L} -homology groups.

References

- 1. A. E. Hatcher, Higher simple homotopy theory, Ann. of Math., 102 (1975) 101 137
- E. K. Pedersen and M. Yamasaki, Stability in Controlled L-theory, in Exotic homology manifolds

 Oberwolfach 2003 (electronic), Geom. Topol. Monogr. 9 (Geom. Topol. Publ., Coventory, 2006)
 67 86.
- 3. C. P. Rourke and B. J. Sanderson, Δ -sets I: homotopy theory, Quart. J. Math. **22** (1971) 321 338
- 4. M. Yamasaki, L-groups of crystallographic groups, Invent. Math. 88 (1987) 571 602
- 5. M. Yamasaki, L-groups of virtually polycyclic groups, Topology Appl. 33 (1989) 223 233