Squeezing on a Certain \mathbb{L}－space

岡山理科大学•理学部 山崎 正之（Masayuki Yamasaki）
Faculty of Science，Okayama University of Science

1．Introduction

In a joint 2006 paper［2］，E．Pedersen and I proved a certain stability result for controlled L－groups．The proof depended on a construction called the Alexander trick． In this note I describe a modified Alexander trick which can be used to give a built－ in squeezing mechanism of a certain \mathbb{L}－space．This should replace the＂barycentric subdivision argument＂used in［4］．

2．Iterated Mapping Cylinders

Let X be a finite polyhedron，and M be a topological space．We are interested in a map $p: M \rightarrow X$ which has an iterated mapping cylinder decomposition in the sense of Hatcher［1］：there is a partial order on the set of the vertices of X such that，for each simplex Δ of X ，
（1）the partial order restricts to a total order of the vertices of Δ

$$
v_{0}<v_{1}<\cdots<v_{n},
$$

（2）$p^{-1}(\Delta)$ is the iterated mapping cylinder of a sequence of maps

$$
F_{v_{0}} \longrightarrow F_{v_{1}} \longrightarrow \ldots \longrightarrow F_{v_{n}}
$$

（3）the restriction $p \mid p^{-1}(\Delta)$ is the natural map induced from the iterated mapping cylinder structure of $p^{-1}(\Delta)$ above and the iterated mapping cylinder structure of Δ coming from the sequence

$$
\left\{v_{0}\right\} \longrightarrow\left\{v_{1}\right\} \longrightarrow \ldots \longrightarrow\left\{v_{n}\right\}
$$

To simplify the situation we assume that X is an n－simplex Δ with vertices v_{0}, v_{1} ， \ldots, v_{n} ．The edge $\left|v_{0}, v_{1}\right|$ is the mapping cylinder $v_{0} \times\left\{0 \leq t_{1} \leq 1\right\} /\left(v_{0}, 1\right) \sim v_{1}$ ，the face $\left|v_{0}, v_{1}, v_{2}\right|$ is the mapping cylinder $\left|v_{0}, v_{1}\right| \times\left\{0 \leq t_{2} \leq 1\right\} /(x, 1) \sim v_{2}, \ldots$ ，and $\Delta=\left|v_{0}, \ldots, v_{n}\right|$ is the mapping cylinder $\left|v_{0}, \ldots, v_{n-1}\right| \times\left\{0 \leq t_{n} \leq 1\right\} /(x, 1) \sim v_{n}$ ． Thus we can assign a point in Δ to each $\left(t_{1}, \ldots, t_{n}\right) \in[0,1]^{n} .\left(t_{1}, \ldots, t_{n}\right)$ is pseudo－ coordinates of the point in the sense that the coordinates are not uniquely determined by the point．If $\left(\lambda_{0}, \ldots, \lambda_{n}\right)$ are the barycentric coordinates of a point $x \in \Delta$ ，i．e．
$x=\sum \lambda_{i} v_{i}\left(\lambda_{0}+\cdots+\lambda_{n}=1\right)$, then t_{i} is equal to $\lambda_{i} /\left(\lambda_{0}+\cdots+\lambda_{i}\right)$, when defined, and is indeterminate when $\lambda_{0}=\cdots=\lambda_{i}=0$.

For each vertex v of Δ, define a simplicial map $s^{v}: \Delta \rightarrow \Delta$ by:

$$
s^{v}(u)= \begin{cases}v & \text { for a vertex } u \text { with } u<v \\ u & \text { for a vertex } u \text { with } u \geq v\end{cases}
$$

For example, $s^{v_{0}}$ is the identity map, and $s^{v_{n}}$ is the constant map which sends every point of Δ to v_{n}. A strong deformation retraction $s_{t}^{v}: \Delta \rightarrow \Delta$ is defined by $s_{t}^{v}(x)=$ $(1-t) x+t s^{v}(x)$, where $x \in \Delta$ and $t \in[0,1]$. Note that this strong deformation retraction s_{t}^{v} is covered by a deformation \tilde{s}_{t}^{v} on M, since M has an iterated mapping cylinder structure. Also note that $s_{t}^{v_{j}}(t>0)$ changes the t_{j} pseudo-coordinate but fixes the other pseudo-cordinates $t_{i}(i \neq j)$.

3. Alexander Tricks

Let M be an iterated mapping cylinder of maps

$$
F_{v_{0}} \longrightarrow F_{v_{1}} \longrightarrow \ldots \longrightarrow F_{v_{n}}
$$

and $p: M \rightarrow \Delta=\left|v_{0}, \ldots, v_{n}\right|$ be the projection from M to the ordered n-simplex Δ as in the previous section. Suppose c is a quadratic Poincaré $(n+2)$-ad on $p: M \rightarrow \Delta$, such that $\partial_{i} c$ is a quadratic Poincaré $(n+1)$-ad on $p \mid p^{-1}\left(\partial_{i} \Delta\right), i=0, \ldots, n([4][5])$. Such an $(n+2)$-ad c is said to be proper on Δ or simply proper.

We will describe a version of Alexander trick for such a proper $(n+2)$-ad c. First fix a positive integer N ("height") and pick up a vertex $v=v_{j}$ of Δ toward which we try to squeeze the objects. Triangulate the closed interval $I_{N}=[0, N]$ using unit intervals and represent each simplex by its barycenter. Use these points to construct the symmetric Poincaré triad e of $\left(I_{N} ; 0, N\right)$. Take the tensor product of c and e and denote it by $c \times I_{N}$. This is a geometric object on $M \times I_{N}$ which gives a cobordism between $c \times 0$ and the $(n+2)$-ad c^{\prime} defined by:

$$
\begin{aligned}
c^{\prime} & =c \times N \cup \partial_{j} c \times I_{N}, \\
\partial_{i} c^{\prime} & = \begin{cases}\partial_{i} c \times N \cup \partial_{j-1} \partial_{i} c \times I_{N} & \text { if } i<j, \\
\partial_{j} c \times 0 & \text { if } i=j, \\
\partial_{i} c \times N \cup \partial_{j} \partial_{i} c \times I_{N} & \text { if } i>j .\end{cases}
\end{aligned}
$$

So this construction does not change the j-th face $\partial_{j} c=\partial_{j} c \times 0$. If $i \neq j$, then one can perform the same construction to $\partial_{i} c$ to get $\left(\partial_{i} c\right)^{\prime}$, which coincides with $\partial_{i} c^{\prime}$.

Define maps $S_{N}^{v}: \Delta \times I_{N} \rightarrow \Delta \times I_{N}$ and $\widetilde{S}_{N}^{v}: M \times I_{N} \rightarrow M \times I_{N}$ by

$$
S_{N}^{v}(x, t)=\left(s_{t / N}^{v}(x), t\right) \text { and } \widetilde{S}_{N}^{v}(w, t)=\left(\tilde{s}_{t / N}^{v}(w), t\right)
$$

Define an ordered $(n+1)$-simplex $\Delta^{n+1}\left(\subset \Delta \times I_{N}\right)$ by

$$
\Delta^{n+1}=\left(\left\langle v_{0}, \ldots, v_{j}\right\rangle \times 0\right) *\left(\left\langle v_{j}\right\rangle \times N\right) *\left(\left\langle v_{j+1}, \ldots, v_{n}\right\rangle \times 0\right) .
$$

Here $*$ denotes the join of simplices. Note that

$$
\begin{aligned}
& S_{N}^{v}\left(\Delta \times I_{N}\right)=\bigcup_{0 \leq t \leq N}\left(s_{t / N}^{v}\left(\left\langle v_{0}, \ldots, v_{j}\right\rangle \times t\right) *\left(\left\langle v_{j+1}, \ldots, v_{n}\right\rangle \times t\right),\right. \\
& \Delta^{n+1}=\bigcup_{0 \leq t \leq N}\left(s_{t / N}^{v}\left(\left\langle v_{0}, \ldots, v_{j}\right\rangle \times t\right) *\left(\left\langle v_{j+1}, \ldots, v_{n}\right\rangle \times 0\right) .\right.
\end{aligned}
$$

Therefore, the obvious vertical retraction

$$
\left\langle v_{j+1}, \ldots, v_{n}\right\rangle \times I_{N} \longrightarrow\left\langle v_{j+1}, \ldots, v_{n}\right\rangle \times 0
$$

induces a map R_{N}^{v} from the image $S_{N}^{v}\left(\Delta \times I_{N}\right)$ to Δ^{n+1}. Let

$$
q=p \times 1_{I_{N}} \mid: M_{\Delta^{n+1}}=\left(p \times 1_{I_{N}}\right)^{-1}\left(\Delta^{n+1}\right) \rightarrow \Delta^{n+1}
$$

denote the pull-back of $p: M \rightarrow \Delta$ by the projection map

$$
\pi: \Delta^{n+1} \xrightarrow{\text { inclusion }} \Delta \times I_{N} \xrightarrow{\text { projection }} \Delta .
$$

The map R_{N}^{v} is covered by a map $\widetilde{R}_{N}^{v}: \widetilde{S}_{N}^{v}\left(M \times I_{N}\right) \rightarrow M_{\Delta^{n+1}}$.

Let us look at the relation between c and c^{\prime} (and its functorial image $\left(\widetilde{R}_{N}^{v} \circ \widetilde{S}_{N}^{v}\right)_{*}\left(c^{\prime}\right)$) more closely. As in the pictures above, define a subset Δ^{\prime} of $\partial\left(\Delta \times I_{N}\right)$ by

$$
\Delta^{\prime}=\Delta \times \underset{3}{N \cup \partial_{j} \Delta \times I_{N} .}
$$

The $(n+2)$-ad c^{\prime} lies over Δ^{\prime}. By glueing some of the faces, let us regard $c \times I_{N}$ as an $(n+3)$-ad whose faces are

$$
\partial_{0} c \times I_{N}, \ldots, \partial_{j-1} c \times I_{N}, c^{\prime}, c \times 0, \partial_{j+1} c \times I_{N}, \ldots, \partial_{n} c \times I_{N}
$$

The functorial image of this $(n+3)$-ad by the composition $\widetilde{R}_{N}^{v} \circ \widetilde{S}_{N}^{v}$ defines a proper quadratic Poincaré $(n+3)$-ad $\mathcal{C}_{N}^{v}(c)$ on $q: M_{\Delta^{n+1}} \rightarrow \Delta^{n+1}$.

The face $\left(\widetilde{R}_{N}^{v} \circ \widetilde{S}_{N}^{v}\right)_{*}\left(c^{\prime}\right)$ is a proper quadratic Poincaré $(n+2)$-ad on $q \mid q^{-1}\left(R_{N}^{v}\left(S_{N}^{v}\left(\Delta^{\prime}\right)\right)\right.$, and is denoted $A_{N}^{v}(c)$. Its functorial image $\pi_{*}\left(A_{N}^{v}(c)\right)$ will be denoted $a_{N}^{v}(c)$. It is a proper on Δ. The functorial image $\pi_{*}\left(\mathcal{C}_{N}^{v}(c)\right)$ can be regarded as a Poincaré cobordism between c and $a_{N}^{v}(c)$. The operation described above is called the Alexander trick (of height N) at the vertex $v=v_{j}$. Note that $a_{N}^{v}(c)$ has a fine control in the t_{j} pseudo-coordinate. Also note that $\partial_{j} a_{N}^{v}(c)=a_{N}^{v}\left(\partial_{j} c\right)=\partial_{j} c$, where $v=v_{j}$.

If we successively apply the Alexander tricks at $v_{n}, \ldots, v_{1}, v_{0}$ to the given proper quadratic Poincaré $(n+2)$-ad c, then we get finely controlled object which is cobordant to c. This process is called "squeezing" of "shrinking". When we use the same height N at every vertex, then the squeezed object obtained from c will be denoted $S_{N}(c)$:

$$
S_{N}(c)=a_{N}^{v_{0}}\left(a_{N}^{v_{1}}\left(\ldots\left(a_{N}^{v_{n}}(c)\right) \ldots\right)\right)
$$

The cobordism between c and $S_{N}(c)$ constructed above is called the standard cobordism. The squeezing operation S_{N} preserves the face relation:

Proposition 3.1. $\partial_{i} S_{N}(c)$ is equal to $S_{N}\left(\partial_{i} c\right)$. Furthermore, the standard cobordism between $\partial_{i} c$ and $\partial_{i} S_{N}(c)$ is equal to the standard cobordism between $\partial_{i} c$ and $S_{N}\left(\partial_{i} c\right)$.

4. \mathbb{L}-SPACES

The squeezing operation seems to justify the following simple definition of the coefficient L-space $\mathbb{L}_{n}(p: M \rightarrow X)$ for the generalized homology $H_{*}(X ; \mathbb{L}(p))$, where $p: M \rightarrow X$ is a map from a space to a finite polyhedron which has an iterated mapping cylinder decomposition and n is an integer. It is a Δ-set; a k-simplex is an $(n+k)$-dimensional proper quadratic Poincaré $(k+2)-\operatorname{ad}\left(c ; \partial_{0} c, \ldots, \partial_{k} c\right)$ on the pullback $\pi^{*} M \rightarrow\left(\Delta ; \partial_{0} \Delta, \ldots, \partial_{k} \Delta\right)$, where Δ is a k-simplex and $\pi: \Delta \rightarrow \Delta^{l}$ is an affine surjection from Δ to an l-dimensional simplex Δ^{l} of $X(l \leq k)$ induced by an order (\leq) preserving map between the vertices.

Two such simplices $\left(c, \pi: \Delta \rightarrow \Delta^{l}\right)$ and $\left(c^{\prime}, \pi^{\prime}: \Delta^{\prime} \rightarrow \Delta^{l}\right)$ are identified when there is an affine homeomorphism $\phi: \Delta \rightarrow \Delta^{\prime}$ of ordered simplices such that $\pi=\pi^{\prime} \circ \phi$ and $\phi_{*}(c)=c^{\prime}$.

Note that the squeezing operation S_{N} defines a simplicial homotopy of the identity map of $\mathbb{L}_{n}(p: M \rightarrow X)$ to a simplicial map whose image is contained in a subset made up of simplices of 'small radius' measured on X, if N is large. Thus this space has a built-in 'squeezing' mechanism.

Let us consider the special case when X is a single point. There is a similar Δ-set $\mathbb{L}_{n}^{\prime}(M)$ whose k-simplex is an $(n+k)$-dimensional quadratic Poincaré $(k+2)$-ad c on M that is special, i.e. $\partial_{0} \partial_{1} \ldots \partial_{k} c$ is $0 . \pi_{0}\left(\mathbb{L}_{n}^{\prime}(p: M \rightarrow *)\right)$ is isomorphic to $L_{n}^{h}\left(\mathbb{Z} \pi_{1}(M)\right)$.

There is a map $\mathbb{L}_{n}(M \rightarrow *) \rightarrow \mathbb{L}_{n}^{\prime}(M)$ that sends a k-simplex (c, π) to its functorial image $\pi_{*}(c)$. A map in the reverse direction can be constructed as follows. Let c be a k-simplex of $\mathbb{L}_{n}^{\prime}(M)$. It is made up of three type of things: (1) 'points' in M (generators of free modules), (2) paths with coefficients connecting the generators, and (3) homotopies of certain paths. Since c is special, one can make a $1-1$ correspondence between its faces (including c itself) and the faces of a standard k-simplex Δ (including Δ itself), and can make copies of the faces of c on the sets $\{$ barycenters $\} \times M \subset \Delta \times M$ and realizing the morphisms between adjacent pieces by using the original paths in c in the M-direction and the path connecting two adjacent barycenters in the Δ-direction as components. Similarly for homotopies of paths. These are homotopy inverses of each other.

Therefore, $\mathbb{L}_{n}(p: M \rightarrow X)$ defined above may give a convenient description of \mathbb{L}-homology groups.

References

1. A. E. Hatcher, Higher simple homotopy theory, Ann. of Math., 102 (1975) $101-137$
2. E. K. Pedersen and M. Yamasaki, Stability in Controlled L-theory, in Exotic homology manifolds - Oberwolfach 2003 (electronic), Geom. Topol. Monogr. 9 (Geom. Topol. Publ., Coventory, 2006) $67-86$.
3. C. P. Rourke and B. J. Sanderson, Δ-sets I: homotopy theory, Quart. J. Math. 22 (1971) 321 338.
4. M. Yamasaki, L-groups of crystallographic groups, Invent. Math. 88 (1987) 571 - 602
5. M. Yamasaki, L-groups of virtually polycyclic groups, Topology Appl. 33 (1989) 223 - 233
