A definable strong G retract of a definable G set in a real closed field

Tomohiro Kawakami

Wakayama University

August 30, 2010

Tomohiro Kawakami (Wakayama University)A definable strong $m{G}$ retract of a definable $m{G}$

Ordered fields

• A field $(R, +, \cdot, <)$ with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.

Ordered fields

A field (R, +, ·, <) with a dense linear order < without endpoints is an ordered field if it satisfies the following two conditions.
(1) For any x, y, z ∈ R, if x < y, then x + z < y + z.
(2) For any x, y, z ∈ R, if x < y and z > 0, then xz < yz.

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies one of the following two equivalent conditions.

Real closed fields

An ordered field (R, +, ·, <) is a *real field* if it satisfies one of the following two equivalent conditions.
(1) There do not exist x₁,..., x_n ∈ R such that x₁² + ··· + x_n² = -1.
(2) For any y₁,..., y_m ∈ R, y₁² + ··· + y_m² = 0 ⇒ y₁ = ··· = y_m = 0.

Real closed fields

An ordered field (R, +, ·, <) is a real field if it satisfies one of the following two equivalent conditions.
(1) There do not exist x₁,..., x_n ∈ R such that x₁² + ··· + x_n² = -1.
(2) For any y₁,..., y_m ∈ R, y₁² + ··· + y_m² = 0 ⇒ y₁ = ··· = y_m = 0. A real field (R, +, ·, <) is a real closed field if it satisfies one of the following two equivalent conditions.

Real closed fields

• An ordered field $(R, +, \cdot, <)$ is a *real field* if it satisfies one of the following two equivalent conditions.

(1) There do not exist $x_1, \ldots, x_n \in R$ such that $x_1^2 + \cdots + x_n^2 = -1$. (2) For any $y_1, \ldots, y_m \in R$, $y_1^2 + \cdots + y_m^2 = 0 \Rightarrow y_1 = \cdots = y_m = 0$. A real field $(R, +, \cdot, <)$ is a *real closed field* if it satisfies one of the following two equivalent conditions. (1) [Intermediate value property] For every $f(x) \in R[x]$, if a < band $f(a) \neq f(b)$, then $f([a, b]_R)$ contains $[f(a), f(b)]_R$ if $f(a) \leq f(b) \approx [f(b), f(a)]_E$ if $f(b) \leq f(a)$, where

$$f(a) < f(b)$$
 or $[f(b), f(a)]_R$ if $f(b) < f(a)$, where
 $[a,b]_R = \{x \in R | a \le x \le b\}.$
(2) The ring $R[i] = R[x]/(x^2 + 1)$ is an algebraically closed field.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:
 (1) The field R of real numbers.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

• O-minimal structures are a class of ordered structures generalizing interesting classical structures such as:

(1) The field \mathbb{R} of real numbers.

(2) $\mathbf{R}_{an} := (\mathbb{R}, +, \cdot, <, (f))$, where f ranges over all restricted analytic functions, namely all functions $\mathbb{R}^n \to \mathbb{R}, n \in \mathbb{N}$ that vanish identically outside $[-1, 1]^n$ and whose restrictions to $[-1, 1]^n$ are analytic.

(3) $\mathbf{R}_{an}^{S} := (\mathbb{R}, +, \cdot, <, (f), (x^{r})_{r \in S})$, where S is a subset of \mathbb{R} , f ranges over all restricted analytic functions as in (2)., and the function $x^{r} : \mathbb{R} \to \mathbb{R}$ is given by

$$a\mapsto \left\{egin{array}{cc} a^r, & a>0\ 0, & a\leq 0 \end{array}
ight.$$

(4) $\mathbf{R}_{exp} := (\mathbb{R}, +, \cdot, <, exp)$, where $exp : \mathbb{R} \to \mathbb{R}$ denotes the exponential function $x \mapsto e^x$.

(5) $\mathbf{R}_{an,exp} := (\mathbb{R},+,\cdot,<,(f),exp)$, where (f) and exp denote as above.

• An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means $(a, b), -\infty \le a < b \le \infty$.

- An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
 If (R, +, ·, <) is a real closed field, then it is o-minimal and the
 - collection of definable sets coincides that of semialgebraic sets.

An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.

- An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal (order minimal)* if every definable set of R is a finite union of open intervals and points, where open interval means (a, b), -∞ ≤ a < b ≤ ∞.
 If (R, +, ·, <) is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets. The topology of R is the interval topology and the topology of Rⁿ is the product topology.
 - In this presentation, everything is considered in an o-minimal expansion $\mathcal{N} = (\mathbf{R}, +, \cdot, <, \dots,)$ of a real closed field $(\mathbf{R}, +, \cdot, <)$ unless otherwise stated.

• Recall the definition of structures from model theory.

Structures

- Recall the definition of structures from model theory. A structure $\mathcal{N} = (R, (f_i), (L_j), (c_k))$ is given by the following data.
 - **(**) A set R called the underlying set or universe of \mathcal{N} .
 - ② A collection of functions $\{f_i | i \in I\}$, where $f_i : R^{n_i} \to R$ for some $n_i \geq 1$.
 - S A collection of relations $\{L_j | j \in J\}$, where $L_j \subset R^{m_j}$ for some $m_j \geq 1$.
 - A collection of distinguished elements $\{c_k | k \in K\} \subset R$, and each c_k is called a constant.

Any (or all) of the sets I, J, K may be empty. We refer n_i and m_j as the arity of f_i and L_j .

Structures

- Recall the definition of structures from model theory. A structure $\mathcal{N} = (R, (f_i), (L_j), (c_k))$ is given by the following data.
 - **(**) A set R called the underlying set or universe of \mathcal{N} .
 - ② A collection of functions $\{f_i | i \in I\}$, where $f_i : R^{n_i} \to R$ for some $n_i \geq 1$.
 - **3** A collection of relations $\{L_j | j \in J\}$, where $L_j \subset R^{m_j}$ for some $m_j \geq 1$.
 - A collection of distinguished elements $\{c_k | k \in K\} \subset R$, and each c_k is called a constant.

Any (or all) of the sets I, J, K may be empty. We refer n_i and m_j as the arity of f_i and L_j .

We say that f (resp. L) is an m-place function symbol (resp. an m-place relation symbol) if $f : \mathbb{R}^m \to \mathbb{R}$ is a function (resp. $L \subset \mathbb{R}^m$ is a relation).

- A term is a finite string of symbols obtained by repeated applications of the following three rules:
 - Constants are terms.
 - ② Variables are terms.
 - 3 If f is an m-place function symbol of \mathcal{N} and t_1, \ldots, t_m are terms, then the concatenated string $f(t_1, \ldots, t_m)$ is a term.

Formulas

A formula is a finite string of symbols s₁...s_k, where each s_i is either a variable, a function symbol, a relation symbol, one of the logical symbols =, ¬, ∨, ∧, ∃, ∀, one of the brackets (,), or comma ,.

Formulas

A formula is a finite string of symbols s₁...s_k, where each s_i is either a variable, a function symbol, a relation symbol, one of the logical symbols =, ¬, ∨, ∧, ∃, ∀, one of the brackets (,), or comma

Arbitrary formulas are generated inductively by the following three rules:

- **(**) For any two terms t_1 and t_2 , $t_1 = t_2$ and $t_1 > t_2$ are formulas.
- 2 If L is an m-place relation symbol and t_1, \ldots, t_m are terms, then $L(t_1, \ldots, t_m)$ is a formula.
- If \$\phi\$ and \$\psi\$ are formulas, then the negation ¬\$\phi\$, the disjunction \$\phi\$ ∨ \$\psi\$, and the conjunction \$\phi\$ ∧ \$\psi\$ are formulas. If \$\phi\$ is a formula and \$\varvariable\$ is a variable, then \$(\exists v)\$\phi\$ and \$(\forall v)\$\phi\$ are formulas.

Definable sets

• A subset X of \mathbb{R}^n is definable (in \mathcal{N}) if it is defined by a formula (with parameters). Namely, there exist a formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ and elements $b_1, \ldots, b_m \in \mathbb{R}$ such that $X = \{(a_1, \ldots, a_n) \in \mathbb{R}^n | \phi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } \mathcal{N}\}.$

A subset X of Rⁿ is definable (in N) if it is defined by a formula (with parameters). Namely, there exist a formula φ(x₁,..., x_n, y₁,..., y_m) and elements b₁,..., b_m ∈ R such that X = {(a₁,..., a_n) ∈ Rⁿ|φ(a₁,..., a_n, b₁,..., b_m) is true in N}. In this case, we say that X is a definable set.

• The development of o-minimality has been influenced by real analytic geometry and it is based on the following four things.

• The development of o-minimality has been influenced by real analytic geometry and it is based on the following four things.

(1) Adaptation of methods of real analytic geometry and Nash setting to the o-minimal setting.

(2) Construction of new interesting examples of o-minimal structures.(3) New insights originated from model-theoretic methods into the real analytic setting and Nash setting.

(4) O-minimal structures give a generalization, a uniform treatment and new tools.

• The field $\mathbb{R}[X]^{\wedge}$ of Puiseux series with real coefficients, namely the set of expressions $\sum_{i=k}^{\infty} a_i X^{\frac{i}{q}}, k \in \mathbb{Z}, q \in \mathbb{N}, a_i \in \mathbb{R}$. $\mathbb{R}[X]^{\wedge}$ is non-Archimedian.

Theorem

(1) The characteristic of every real closed field is 0.

(2) For any cardinality $\kappa \geq \aleph_0$, there exist 2^{κ} many non-isomorphic real closed fields with cardinality κ .

(3) There exists uncountably many o-minimal expansions of the field \mathbb{R} of real numbers.

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (\mathbf{R}, +, \cdot, <, \dots)$ of a real closed field \mathbf{R} .

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, ...)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0,1)_R \to X$, there exists the limit $\lim_{x \to 1-0} f(x)$ exists in X, where $[0,1)_R = \{x \in R | 0 \le x < 1\}$.

Definably compact and definably connected

• In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, \dots)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0,1)_R \to X$, there exists the limit $\lim_{x \to 1-0} f(x)$ exists in X, where $[0,1)_R = \{x \in R | 0 \le x < 1\}$. A definable subset X of R^n is definably connected if there do not exist two non-empty definable open subsets Y, Z of X such that $X = Y \cup Z$ and $Y \cap Z = \emptyset$. • In the rest of this presentation, we fix an o-minimal expansion $\mathcal{N} = (R, +, \cdot, <, \dots)$ of a real closed field R. A definable subset X of R^n is definably compact if for any definable function $f : [0,1)_R \to X$, there exists the limit $\lim_{x \to 1-0} f(x)$ exists in X, where $[0,1)_R = \{x \in R | 0 \le x < 1\}$. A definable subset X of R^n is definably connected if there do not exist two non-empty definable open subsets Y, Z of X such that $X = Y \cup Z$ and $Y \cap Z = \emptyset$.

A compact definable set is definably compact, but a definably compact set is not necessarily compact. A connected definable set is definable connected, but a definably connected set is not necessarily connected. For example if

$$R = \mathbb{R}_{alg} := \{x \in \mathbb{R} | x \text{ is algebraic over } \mathbb{Q}\}$$
, then
 $[0,1]_{\mathbb{R}_{alg}} = \{x \in \mathbb{R}_{alg} | 0 \le x \le 1\}$ is definably compact and definably connected but neither compact nor connected.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Definition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \ (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

Theorem (Peterzil and Steinhorn 1999)

For a definable subset of \mathbb{R}^n , it is definably compact if and only if it is closed and bounded.

Definition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is definable if the graph of $f \ (\subset \mathbb{R}^n \times \mathbb{R}^m)$ is definable.

Proposition

Let $X \subset \mathbb{R}^n$, $Y \subset \mathbb{R}^m$ be definable sets and $f : X \to Y$ a definable map. If X is definably compact (resp. definably connected), then f(X) is definably compact (resp. definably connected).

Theorem (Intermediate value property)

For every definable function f(x) defined on [a, b] with $f(a) \neq f(b)$, $f([a, b]_R)$ contains $[f(a), f(b)]_R$ if f(a) < f(b) or $[f(b), f(a)]_R$ if f(b) < f(a).

(1) A definable subset G of \mathbb{R}^n is a definable group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable. (2) A definable group G is a definably compact definable group if G is definably compact.

(1) A definable subset G of \mathbb{R}^n is a definable group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable. (2) A definable group G is a definably compact definable group if G is definably compact.

Definition

Let G be a definably compact definable group. A group homomorphism from G to some $O_n(R)$ is a representation if it is definable, where $O_n(R)$ means the *n*th orthogonal group of R. A representation space of G is R^n with the orthogonal action induced from a representation of G. A definable G set means a G invariant definable subset of some representation space of G. • Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable sets and $f: X \to Z$ a definable map. We say that f is a definable homeomorphism if there exists a definable map $h: Z \to X$ such that $f \circ h = id_Z$ and $h \circ f = id_X$. We call f definably proper if for every definably compact subset C of Z, $f^{-1}(C)$ is definably compact.

• Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable sets and $f: X \to Z$ a definable map. We say that f is a definable homeomorphism if there exists a definable map $h: Z \to X$ such that $f \circ h = id_Z$ and $h \circ f = id_X$. We call f definably proper if for every definably compact subset C of Z, $f^{-1}(C)$ is definably compact. Let $X \subset \mathbb{R}^n, Z \subset \mathbb{R}^m$ be definable open sets and $f: X \to Z$ a definable map. We say that f is a definable C^r map if f is of class C^r .

A definable C^r map is a definable C^r diffeomorphism if f is a C^r diffeomorphism.

(1) Let r be a non-negative integer or ∞ . A Hausdorff space X is an *n*-dimensional definable C^r manifold if there exist a finite open cover $\{U_\lambda\}_{\lambda \in \Lambda}$ of X, finite open sets $\{V_\lambda\}_{\lambda \in \Lambda}$ of R^n , and finite homeomorphisms $\{\phi_\lambda : U_\lambda \to V_\lambda\}_{\lambda \in \Lambda}$ such that for any λ, ν with $U_\lambda \cap U_\nu \neq \emptyset$, $\phi_\lambda(U_\lambda \cap U_\nu)$ is definable and $\phi_\nu \circ \phi_\lambda^{-1} : \phi_\lambda(U_\lambda \cap U_\nu) \to \phi_\nu(U_\lambda \cap U_\nu)$ is a definable C^r diffeomorphism.

• This pair $(U_{\lambda}, \phi_{\lambda})$ of sets and homeomorphisms is called a *definable* C^{r} coordinate system.

Definition

A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G$ and $G \to G$ are definable C^r maps.

Theorem

(1) For any positive integer r, a definable group G admits a unique definable C^r group structure up to definable C^r group isomorphism. (2) If \mathcal{N} is an o-minimal expansion of the standard structure of \mathbb{R} and it admits the C^{∞} cell decomposition, then we can take $r = \infty$ in (1).

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is an infinite definably compact definable group, then $\chi(G) = 0$.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is an infinite definably compact definable group, then $\chi(G) = 0$.

In the above theorem, the infinite condition is necessary. If G is a finite group of order k, then $\chi(G) = k$.

• For a definable subset X of \mathbb{R}^n , we can define the Euler characteristic $\chi(X)$ definably homologically.

Theorem (Berarducci and Otero 2001)

If G is an infinite definably compact definable group, then $\chi(G) = 0$.

In the above theorem, the infinite condition is necessary. If G is a finite group of order k, then $\chi(G) = k$.

Corollary

If $R = \mathbb{R}$ and G is a compact Lie group of positive dimension, then $\chi(G) = 0$.

Theorem

(1) (Definable triangulation). Let $S \subset \mathbb{R}^n$ be a definable set and S_1, \ldots, S_k definable subsets of S. Then there exist a finite simplicial complex K in \mathbb{R}^n and a definable map $\phi: S \to \mathbb{R}^n$ such that ϕ maps S and each S_i definably homeomorphically onto a union of open simplexes of K. If S is definably compact, then we can take $K = \phi(S)$. (2) (Piecewise definable trivialization). Let X and Z be definable sets and $f: X \to Z$ a definable map. Then there exist a finite partition $\{T_i\}_{i=1}^k$ of Z into definable sets and definable homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(z_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$. $(1 \le i \le k)$, where $z_i \in T_i$ and $p_i : T_i \times f^{-1}(z_i) \to T_i$ denotes the projection.

(3) (Existence of definable quotient). Let G be a definably compact definable group and X a definable G set. Then the orbit space X/G exists as a definable set and the orbit map $\pi : X \to X/G$ is surjective, definable and definably proper.

A subgroup of a definable group is a definable subgroup of it if it is a definable subset of it.

• Note that every definable subgroup of a definable group is closed and a closed subgroup of a definable group is not necessarily definable.

A subgroup of a definable group is a definable subgroup of it if it is a definable subset of it.

• Note that every definable subgroup of a definable group is closed and a closed subgroup of a definable group is not necessarily definable.

Definition

A definable map (resp. A definable homeomorphism) between definable G sets is a definable G map (resp. a definable G homeomorphism) if it is a G map.

Let G be a definable group. A definable set with a definable G action is a pair (X, ϕ) consisting of a definable set X and a group action $\phi: G \times X \to X$ such that ϕ is a definable map.

• This action is not necessarily linear (orthogonal). Similarly, we can define definable *G* maps and definable *G* homeomorphisms between them.

• Using Theorem, if H is a definable subgroup of a definably compact definable group G, then G/H is a definable set, and the standard action $G \times G/H \to G/H$ defined by $(g, g'H) \mapsto gg'H$ of G on G/H makes G/H a definable set with a definable G action.

Let G be a definably compact definable group.

(1) A definable G CW complex is a finite G CW complex

- $(X, \{c_i | i \in I\})$ satisfying the following three conditions.
- (a) The underlying space |X| of X is a definable G set.
 - (b) The characteristic map $f_{c_i}: G/H_{c_i} \times \Delta \to \overline{c_i}$ of each open G cell c_i is a definable G map and $f_{c_i}|G/H_{c_i} \times \ln \Delta : G/H_{c_i} \times \ln \Delta \to c_i$ is a definable G homeomorphism, where H_{c_i} is a definable subgroup of G, Δ denotes a standard closed simplex, $\overline{c_i}$ is the closure of c_i in X, and lnt Δ means the interior of Δ .

(c) For each c_i , $\overline{c_i} - c_i$ is a finite union of open G cells. (2) Let X and Z be definable $G \ CW$ complexes. A cellular G map $f: X \to Z$ is definable if $f: |X| \to |Z|$ is definable. • Since G and every standard closed simplex are definably compact and by definition, every definable G CW complex X is definably compact. Note that a G CW subcomplex of a definable G CW complex is a definable G CW complex itself.

Let X be a definable G set and Y a definable G subset of X. (1) We say that a definable G map $l : X \to Y$ is a definable G retraction from X to Y if $l|Y = id_Y$. (2) A definable strong G deformation retraction from X to Y is a definable G map $L : X \times [0,1]_R \to X$ such that L(x,0) = x for all $x \in X$, L(y,t) = y for all $y \in Y, t \in [0,1]_R$ and L(X,1) = Y, where the action on $[0,1]_R = \{x \in R | 0 \le x \le 1\}$ is trivial. Note that $L(\cdot,1) : X \to Y$ is a definable G retraction from X to Y.

Our result

Theorem (2010)

Let G be a definably compact definable group and X a definable G set. Then there exists a definable strong G deformation retraction L from X to a definably compact definable G subset Y of X.

Let G be a definable group, X, Y definable G sets and $f, h : X \to Y$ definable G maps.

(1) We say that f is definably G homotopic to h if there exists a definable G map $F : X \times [0,1]_R \to Y$ such that F(x,0) = f(x) for all $x \in X$ and F(x,1) = h(x) for all $x \in X$, where the action on $[0,1]_R = \{x \in R | 0 \le x \le 1\}$ is trivial. (2) We denote $[X,Y]_{def}^G$ (resp. $[X,Y]^G$) by the set of definable G (resp. G) homotopy classes of definable G (resp. continuous G) maps from X to Y. For a definable G map (resp. continuous G) map f, $[f]_{def}^G$ (resp. $[f]^G$) means the definable G (resp. G) homotopy class of f.

The case where ${\boldsymbol{\mathcal N}}$ is an o-minimal expansion of ${\mathbb R}$

 If *N* is an o-minimal expansion of ℝ, then using the standard version of our result, we have the following result.

The case where ${\boldsymbol{\mathcal N}}$ is an o-minimal expansion of ${\mathbb R}$

 If *N* is an o-minimal expansion of ℝ, then using the standard version of our result, we have the following result.

Theorem (2004)

If \mathcal{N} is an o-minimal expansion of \mathbb{R} , G is a compact definable group and X, Y are definable G sets, then the map $[X, Y]_{def}^G \to [X, Y]^G$ defined by $[f]_{def}^G \mapsto [f]^G$ is bijective.

The case where ${\boldsymbol{\mathcal N}}$ is an o-minimal expansion of ${\mathbb R}$

 If *N* is an o-minimal expansion of ℝ, then using the standard version of our result, we have the following result.

Theorem (2004)

If \mathcal{N} is an o-minimal expansion of \mathbb{R} , G is a compact definable group and X, Y are definable G sets, then the map $[X, Y]_{def}^G \to [X, Y]^G$ defined by $[f]_{def}^G \mapsto [f]^G$ is bijective.

A crucial tool of the proof of the above theorem is Polynomial Approximation Theorem. This theorem is not always true in a real closed field.

The case where ${\mathcal N}$ is an o-minimal expansion of ${\mathbb R}$

 If *N* is an o-minimal expansion of ℝ, then using the standard version of our result, we have the following result.

Theorem (2004)

If \mathcal{N} is an o-minimal expansion of \mathbb{R} , G is a compact definable group and X, Y are definable G sets, then the map $[X, Y]_{def}^G \to [X, Y]^G$ defined by $[f]_{def}^G \mapsto [f]^G$ is bijective.

A crucial tool of the proof of the above theorem is Polynomial Approximation Theorem. This theorem is not always true in a real closed field.

Remark

Even a non-equivariant version of the above theorem is not true in general \mathcal{N} .

Theorem

Let G be a definably compact definable group. Let X be a definable G set and Y a definable closed G subset of X. Then there exist a definable G CW complex Z in a representation space Ξ of G, a G CW subcomplex W of Z, and a definable G map $f: X \to Z$ such that:

- f maps X and Y definably G homeomorphically onto G invariant definable subsets Z_1 and W_1 of Z and W obtained by removing some open G cells from Z and W, respectively.
 - 2 The orbit map $\pi: Z \to Z/G$ is a definable cellular map.
 - The orbit space Z/G is a finite simplicial complex compatible with π(Z₁) and π(W₁).

• For each open G cell c of Z, $\pi | \overline{c} : \overline{c} \to \pi(\overline{c})$ has a definable section $s : \pi(\overline{c}) \to \overline{c}$, where \overline{c} denotes the closure of c in Z.

Moreover, if X is definably compact, then Z = f(X) and W = f(Y).

Key results for the proof of definable *G CW* complex structure theorem

Lemma

Let G be a definably compact definable group, K, H definable subgroups of G with K < H and X is a definable K set. Then the map $G \times_K X \to G \times_H (H \times_K X), [g, x] \mapsto [g, [e, x]]$ is a definable Ghomeomorphism, where e denotes the unit element of G.

Key results for the proof of definable *G CW* complex structure theorem

Lemma

Let G be a definably compact definable group, K, H definable subgroups of G with K < H and X is a definable K set. Then the map $G \times_K X \to G \times_H (H \times_K X), [g, x] \mapsto [g, [e, x]]$ is a definable Ghomeomorphism, where e denotes the unit element of G.

Theorem

Let G be a definably compact definable group. Then every definable G set has only finitely many orbit types.

Key results for the proof of definable *G CW* complex structure theorem

Theorem (Equivariant piecewise definable trivialization)

Let G be a definably compact definable group, X a definable G set, Z a definable set and $f: X \to Z$ a G invariant definable map. Then there exist a finite decomposition $\{T_i\}_{i=1}^k$ of Z into definable sets and definable G homeomorphisms $\phi_i: f^{-1}(T_i) \to T_i \times f^{-1}(z_i)$ such that $f|f^{-1}(T_i) = p_i \circ \phi_i$, $(1 \le i \le k)$, where p_i denotes the projection $T_i \times f^{-1}(y_i) \to T_i$ and $z_i \in T_i$.

Idea of proof of our theorem

• We use a theorem on definable *G CW* complex structure of a definable *G* set to prove our theorem.

- We use a theorem on definable *G CW* complex structure of a definable *G* set to prove our theorem.
 - We may assume that a definable G set X is definably G homeomorphic to a union of open G cells of a definable $G \ CW$ complex C in a representation Ξ of G.

• We use a theorem on definable *G CW* complex structure of a definable *G* set to prove our theorem.

We may assume that a definable G set X is definably G homeomorphic to a union of open G cells of a definable $G \ CW$ complex C in a representation Ξ of G.

Let Y denote the maximum definably compact $G \ CW$ subcomplex of X. In other words, Y is the union of all open G cells c of X such that $\overline{c} \subset X$, where \overline{c} denotes the closure of c in C.

- We use a theorem on definable *G CW* complex structure of a definable *G* set to prove our theorem.
 - We may assume that a definable G set X is definably G homeomorphic to a union of open G cells of a definable $G \ CW$ complex C in a representation Ξ of G.
 - Let Y denote the maximum definably compact $G \ CW$ subcomplex of X. In other words, Y is the union of all open G cells c of X such that $\overline{c} \subset X$, where \overline{c} denotes the closure of c in C.
 - To complete the proof, we find a definable strong G deformation retraction L and prove that Y is a definable strong G deformation retract of X.

Thank you very much.