On isovariant rigidity of CAT(0) manifolds, I

by Qayum Khan (University of Notre Dame, U.S.A.) joint with J.F. Davis and F.X. Connolly

RIMS Symposium (01 Sep 2010): Transformation Groups and Surgery Theory Kyoto University, JAPAN

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an **aspherical**, closed topological manifold.

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an **aspherical**, closed topological manifold. Suppose M is a closed topological manifold. If $f : M \to X$ is a homotopy equivalence, then f is homotopic to a homeomorphism.

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an **aspherical**, closed topological manifold. Suppose M is a closed topological manifold. If $f : M \to X$ is a homotopy equivalence, then f is homotopic to a homeomorphism.

We say that X is **topologically rigid** if this is true.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Topological Rigidity, II

Here is an important, seminal example.

Theorem

For all $n \ge 0$, the n-torus T^n is topologically rigid.

Topological Rigidity, II

Here is an important, seminal example.

Theorem

For all $n \ge 0$, the n-torus T^n is topologically rigid.

The case $n \le 2$ is true by the classification of curves and surfaces. The case $n \ge 5$ was proven by Hsiang–Wall (1969). The case n = 4 was proven by Freedman–Quinn (1990). The case n = 3 was by Waldhausen (1968) and Perelman (2003).

Topological Rigidity, III

That example is a member of a certain differential-geometric class.

Theorem (Farrell–Jones, 1993)

Let X be a closed smooth manifold of dimension ≥ 5 . Suppose X admits a Riemannian metric such that each sectional curvature is non-positive (≤ 0). Then X is topologically rigid.

Topological Rigidity, IV

That hypothesis can be weakened with geometric group theory.

Theorem (Bartels–Lück, 2009)

Let X be a closed topological manifold of dimension ≥ 5 . Suppose the universal cover \widetilde{X} admits a CAT(0) metric and the fundamental group $\pi_1(X)$ acts isometrically on \widetilde{X} . Then X is topologically rigid.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ □臣 = のへで

Equivariant Rigidity of the Torus, I

Recall the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, which we discussed earlier.

Equivariant Rigidity of the Torus, I

Recall the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, which we discussed earlier.

Theorem (Connolly–Davis–Khan, 2010)

Consider all homeomorphisms $\sigma : T^n \to T^n$ such that:

- $\sigma^2 = \operatorname{id} on T^n$, and
- $\sigma_* = -\mathrm{id}$ on $H_1(T^n; \mathbb{Z})$.

Equivariant Rigidity of the Torus, I

Recall the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, which we discussed earlier.

Theorem (Connolly–Davis–Khan, 2010)

Consider all homeomorphisms $\sigma : T^n \to T^n$ such that:

- $\sigma^2 = \operatorname{id} on T^n$, and
- $\sigma_* = -\mathrm{id}$ on $H_1(T^n; \mathbb{Z})$.
- If $n \equiv 0, 1 \pmod{4}$ or n = 3, then there is a unique conjugacy class of such involutions σ , represented by $\sigma_0 : [x] \mapsto [-x]$.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of the Torus, I

Recall the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, which we discussed earlier.

Theorem (Connolly–Davis–Khan, 2010)

Consider all homeomorphisms $\sigma : T^n \to T^n$ such that:

- $\sigma^2 = \operatorname{id} on T^n$, and
- $\sigma_* = -\mathrm{id}$ on $H_1(T^n; \mathbb{Z})$.
- If $n \equiv 0, 1 \pmod{4}$ or n = 3, then there is a unique conjugacy class of such involutions σ , represented by $\sigma_0 : [x] \mapsto [-x]$.
- **2** If $n \equiv 2,3 \pmod{4}$ with n > 3, then there are infinitely many conjugacy classes of such involutions σ , all locally linear.

Equivariant Rigidity of the Torus, I

Recall the *n*-torus $T^n = \mathbb{R}^n / \mathbb{Z}^n$, which we discussed earlier.

Theorem (Connolly–Davis–Khan, 2010)

Consider all homeomorphisms $\sigma : T^n \to T^n$ such that:

- $\sigma^2 = \operatorname{id} on T^n$, and
- $\sigma_* = -\mathrm{id}$ on $H_1(T^n; \mathbb{Z})$.
- If $n \equiv 0, 1 \pmod{4}$ or n = 3, then there is a unique conjugacy class of such involutions σ , represented by $\sigma_0 : [x] \mapsto [-x]$.
- **2** If $n \equiv 2,3 \pmod{4}$ with n > 3, then there are infinitely many conjugacy classes of such involutions σ , all locally linear.

The proof follows from the next three technical theorems.

Equivariant Rigidity of the Torus, II

Before moving on, consider the following surgery-theoretic concept.

Definition

Let X be a topological manifold equipped with a cocompact action of a discrete group Γ . The **equivariant structure set** $\mathscr{S}_{\text{TOP}}(X, \Gamma)$ is the set of equivalence classes of all pairs (M, f) such that:

- $M \subset \mathbb{R}^{\infty}$ is a manifold equipped with a cocompact Γ -action,
- $f: M \to X$ is a Γ -equivariant homotopy equivalence.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of the Torus, II

Before moving on, consider the following surgery-theoretic concept.

Definition

Let X be a topological manifold equipped with a cocompact action of a discrete group Γ . The **equivariant structure set** $\mathscr{S}_{\text{TOP}}(X, \Gamma)$ is the set of equivalence classes of all pairs (M, f) such that:

- $M \subset \mathbb{R}^{\infty}$ is a manifold equipped with a cocompact Γ -action,
- $f: M \to X$ is a Γ -equivariant homotopy equivalence.

Here, the pair (M, f) is equivalent to another such pair (M', f') if there exists a Γ -equivariant homeomorphism $h: M \to M'$ such that $f' \circ h$ is equivariantly homotopic to f.

Equivariant Rigidity of the Torus, III

Using Smith theory, we quantify those involutions to count them.

Theorem (Connolly–Davis–Khan, 2010)

The set of conjugacy classes of topological involutions

$$\sigma: T^n \to T^n$$
 such that $\sigma_* = -\mathrm{id}$ on $H_1(T^n)$

is in bijective correspondence with the equivariant structure set

 $\mathcal{S}_{\mathrm{TOP}}(T^n,C_2).$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of the Torus, III

Using Smith theory, we quantify those involutions to count them.

Theorem (Connolly–Davis–Khan, 2010)

The set of conjugacy classes of topological involutions

$$\sigma: T^n \to T^n$$
 such that $\sigma_* = -id$ on $H_1(T^n)$

is in bijective correspondence with the equivariant structure set

 $\mathscr{S}_{\mathrm{TOP}}(T^n, C_2).$

Here, the action of C_2 on $T^n = S^1 \times \cdots \times S^1$ is generated by

$$\sigma_0:(z_1,\ldots,z_n)\mapsto (\overline{z}_1,\ldots,\overline{z}_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivariant Rigidity of the Torus, IV

Consider the associated crystallographic group Γ_n acting on \mathbb{R}^n :

$$\Gamma_n := \mathbb{Z}^n \rtimes_{-1} C_2.$$

◆□> ◆□> ◆三> ◆三> ・三> のへで

Equivariant Rigidity of the Torus, IV

Consider the associated crystallographic group Γ_n acting on \mathbb{R}^n :

$$\Gamma_n := \mathbb{Z}^n \rtimes_{-1} C_2.$$

Theorem (Connolly–Davis–Khan, 2010)

Suppose $n \ge 4$ and write $\varepsilon := (-1)^n$. Then

$$\mathscr{S}_{\mathrm{TOP}}(T^n, C_2) \cong \mathscr{S}_{\mathrm{TOP}}(\mathbb{R}^n, \Gamma_n) \cong \bigoplus \mathrm{UNil}_{n+\varepsilon}(D).$$

Equivariant Rigidity of the Torus, IV

Consider the associated crystallographic group Γ_n acting on \mathbb{R}^n :

$$\Gamma_n := \mathbb{Z}^n \rtimes_{-1} C_2.$$

Theorem (Connolly–Davis–Khan, 2010)

Suppose $n \ge 4$ and write $\varepsilon := (-1)^n$. Then

$$\mathscr{S}_{\mathrm{TOP}}(T^n, C_2) \cong \mathscr{S}_{\mathrm{TOP}}(\mathbb{R}^n, \Gamma_n) \cong \bigoplus \mathrm{UNil}_{n+\varepsilon}(D).$$

Here, the direct sum is indexed by conjugacy classes (D) of maximal infinite dihedral subgroups $D \cong D_{\infty}$ of Γ_n .

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of the Torus, V

The above abelian groups have already been calculated.

Theorem (Banagl–Connolly–Davis–Ranicki, 2004)For each integer m, there is an isomorphismUNilm(D_{∞}) \cong $\begin{pmatrix} 0 & if \ m \equiv 0 \pmod{4} \\ 0 & if \ m \equiv 1 \pmod{4} \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus \infty} & if \ m \equiv 2 \pmod{4} \\ (\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z})^{\oplus \infty} & if \ m \equiv 3 \pmod{4}. \end{pmatrix}$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of the Torus, V

The above abelian groups have already been calculated.

 $\begin{array}{l} \hline \text{Theorem (Banagl-Connolly-Davis-Ranicki, 2004)} \\ \hline \text{For each integer }m, \ there \ is \ an \ isomorphism \\ \\ \text{UNil}_m(D_\infty) \ \cong \ \begin{cases} 0 & \text{if } m \equiv 0 \pmod{4} \\ 0 & \text{if } m \equiv 1 \pmod{4} \\ (\mathbb{Z}/2\mathbb{Z})^{\oplus \infty} & \text{if } m \equiv 2 \pmod{4} \\ (\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/4\mathbb{Z})^{\oplus \infty} & \text{if } m \equiv 3 \pmod{4}. \end{cases} \end{array}$

The last two answers are given by generalized Arf invariants.

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

• X is a model for the classifying space $\underline{E}\Gamma = E_{fin}\Gamma$,

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

- X is a model for the classifying space $\underline{E}\Gamma = E_{fin}\Gamma$,
- each fixed set of X and of M is a locally flat submanifold,

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

- X is a model for the classifying space $\underline{E}\Gamma = E_{fin}\Gamma$,
- each fixed set of X and of M is a locally flat submanifold, and
- each fixed set of X has codimension ≥ 3 in bigger fixed sets.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

- X is a model for the classifying space $\underline{E}\Gamma = E_{fin}\Gamma$,
- each fixed set of X and of M is a locally flat submanifold, and
- each fixed set of X has codimension ≥ 3 in bigger fixed sets.

Let $f : M \to X$ be a simple Γ -isovariant homotopy equivalence. Then f is isovariantly homotopic to a homeomorphism.

Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two. Let X and M be topological manifolds without boundary equipped with cocompact, proper actions of Γ such that:

- X is a model for the classifying space $\underline{E}\Gamma = E_{fin}\Gamma$,
- each fixed set of X and of M is a locally flat submanifold, and
- each fixed set of X has codimension ≥ 3 in bigger fixed sets.

Let $f : M \to X$ be a simple Γ -isovariant homotopy equivalence. Then f is isovariantly homotopic to a homeomorphism.

In this case, we say (X, Γ) is isovariantly topologically rigid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean "simple" in the equivariant sense.

▲日▼ ▲□▼ ▲日▼ ▲日▼ □ ● ● ●

Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean "simple" in the equivariant sense.

Definition (Steinberger, Prassidis)

Let Γ be a discrete group. Let M and X be cocompact Γ -ANRs. Suppose $f : M \to X$ is a Γ -equivariant homotopy equivalence.

Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean "simple" in the equivariant sense.

Definition (Steinberger, Prassidis)

Let Γ be a discrete group. Let M and X be cocompact Γ -ANRs. Suppose $f : M \to X$ is a Γ -equivariant homotopy equivalence. We say that f is **simple** if the the torsion $\tau(f) := f_*(\operatorname{Cyl}(f), M)$ represents the zero element in the abelian group $Wh^{top}(X, \Gamma)$.

Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean "simple" in the equivariant sense.

Definition (Steinberger, Prassidis)

Let Γ be a discrete group. Let M and X be cocompact Γ -ANRs. Suppose $f : M \to X$ is a Γ -equivariant homotopy equivalence. We say that f is **simple** if the the torsion $\tau(f) := f_*(\operatorname{Cyl}(f), M)$ represents the zero element in the abelian group $Wh^{top}(X, \Gamma)$. Here, a strong Γ -deformation retraction pair (Y, X) represents zero if there exist Γ -cell-like pairs (Y', Y) and (Y', X).

Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean "simple" in the equivariant sense.

Definition (Steinberger, Prassidis)

Let Γ be a discrete group. Let M and X be cocompact Γ -ANRs. Suppose $f : M \to X$ is a Γ -equivariant homotopy equivalence. We say that f is **simple** if the the torsion $\tau(f) := f_*(\operatorname{Cyl}(f), M)$ represents the zero element in the abelian group $Wh^{top}(X, \Gamma)$. Here, a strong Γ -deformation retraction pair (Y, X) represents zero if there exist Γ -cell-like pairs (Y', Y) and (Y', X).

Remark

If we drop the "simple" hypothesis in the previous conjecture, then counterexamples were constructed by Connolly–Koźniewski (1991).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivariant Rigidity of CAT(0) Manifolds, III

Now, consider the following case with very little stratified data.

Equivariant Rigidity of CAT(0) Manifolds, III

Now, consider the following case with very little stratified data.

Definition

Let X be a topological space equipped with an action of group Γ .

くロット (雪) (目) (日) (日) (日)

Equivariant Rigidity of CAT(0) Manifolds, III

Now, consider the following case with very little stratified data.

Definition

Let X be a topological space equipped with an action of group Γ . The action is **pseudofree** if the **singular set** X_{sing} is discrete:

$$X_{sing} := \{ x \in X \mid \Gamma_x \neq 1 \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension $n \ge 5$ equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X.

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension $n \ge 5$ equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X. Suppose the action is cocompact, proper, and **pseudofree**.

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension $n \ge 5$ equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X. Suppose the action is cocompact, proper, and **pseudofree**. Then

$\mathcal{S}_{\mathrm{TOP}}(X, \Gamma) \cong \bigoplus \mathrm{UNil}_{n+1}(D, \varepsilon).$

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension $n \ge 5$ equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X. Suppose the action is cocompact, proper, and **pseudofree**. Then

$$\mathscr{S}_{\mathrm{TOP}}(X,\Gamma) \cong \bigoplus \mathrm{UNil}_{n+1}(D,\varepsilon).$$

Here, the direct sum is indexed by conjugacy classes (D) of maximal infinite dihedral subgroups $D \cong D_{\infty}$ of Γ .

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension $n \ge 5$ equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X. Suppose the action is cocompact, proper, and **pseudofree**. Then

$$\mathscr{S}_{\mathrm{TOP}}(X,\Gamma) \cong \bigoplus \mathrm{UNil}_{n+1}(D,\varepsilon).$$

Here, the direct sum is indexed by conjugacy classes (D) of maximal infinite dihedral subgroups $D \cong D_{\infty}$ of Γ . Also, the orientation character $\varepsilon : \Gamma \to \{\pm 1\}$ is given by $g \mapsto \deg(g)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X with no elements of order two.

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X with no elements of order two. Suppose the action is cocompact, proper, and pseudofree.

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X with no elements of order two. Suppose the action is cocompact, proper, and pseudofree. Then X is equivariantly topologically rigid.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X with no elements of order two. Suppose the action is cocompact, proper, and pseudofree. Then X is equivariantly topologically rigid.

Consequently, we generalize the Bartels–Lück Theorem, which is the case when Γ is torsion-free.

Equivariant Rigidity of CAT(0) Manifolds, V

Thus we affirm Quinn's Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with a CAT(0) metric. Let Γ be a discrete group of isometries of X with no elements of order two. Suppose the action is cocompact, proper, and pseudofree. Then X is equivariantly topologically rigid.

Consequently, we generalize the Bartels–Lück Theorem, which is the case when Γ is torsion-free. Our ideas further develop the topological application of their recent solution to the Farrell–Jones Conjecture. This is a powerful algebraic tool we discuss next time...