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Topological Rigidity Equivariant Rigidity of Torus Equivariant Rigidity of CAT(0) Manifolds

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an aspherical, closed topological manifold.
Suppose M is a closed topological manifold. If f : M → X is a
homotopy equivalence, then f is homotopic to a homeomorphism.

We say that X is topologically rigid if this is true.



Topological Rigidity Equivariant Rigidity of Torus Equivariant Rigidity of CAT(0) Manifolds

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an aspherical, closed topological manifold.

Suppose M is a closed topological manifold. If f : M → X is a
homotopy equivalence, then f is homotopic to a homeomorphism.

We say that X is topologically rigid if this is true.



Topological Rigidity Equivariant Rigidity of Torus Equivariant Rigidity of CAT(0) Manifolds

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an aspherical, closed topological manifold.
Suppose M is a closed topological manifold. If f : M → X is a
homotopy equivalence, then f is homotopic to a homeomorphism.

We say that X is topologically rigid if this is true.



Topological Rigidity Equivariant Rigidity of Torus Equivariant Rigidity of CAT(0) Manifolds

Topological Rigidity, I

How close together are algebraic topology and geometric topology?

Conjecture (Borel, 1953)

Let X be an aspherical, closed topological manifold.
Suppose M is a closed topological manifold. If f : M → X is a
homotopy equivalence, then f is homotopic to a homeomorphism.

We say that X is topologically rigid if this is true.



Topological Rigidity Equivariant Rigidity of Torus Equivariant Rigidity of CAT(0) Manifolds

Topological Rigidity, II

Here is an important, seminal example.

Theorem

For all n ≥ 0, the n-torus T n is topologically rigid.

The case n ≤ 2 is true by the classification of curves and surfaces.
The case n ≥ 5 was proven by Hsiang–Wall (1969).
The case n = 4 was proven by Freedman–Quinn (1990).
The case n = 3 was by Waldhausen (1968) and Perelman (2003).
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Topological Rigidity, III

That example is a member of a certain differential-geometric class.

Theorem (Farrell–Jones, 1993)

Let X be a closed smooth manifold of dimension ≥ 5.
Suppose X admits a Riemannian metric
such that each sectional curvature is non-positive (≤ 0).
Then X is topologically rigid.
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Topological Rigidity, IV

That hypothesis can be weakened with geometric group theory.

Theorem (Bartels–Lück, 2009)

Let X be a closed topological manifold of dimension ≥ 5.
Suppose the universal cover X̃ admits a CAT(0) metric
and the fundamental group π1(X ) acts isometrically on X̃ .
Then X is topologically rigid.
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Equivariant Rigidity of the Torus, I

Recall the n-torus T n = Rn/Zn, which we discussed earlier.

Theorem (Connolly–Davis–Khan, 2010)

Consider all homeomorphisms σ : T n → T n such that:

σ2 = id on T n, and

σ∗ = −id on H1(T n;Z).

1 If n ≡ 0, 1 (mod 4) or n = 3, then there is a unique conjugacy
class of such involutions σ, represented by σ0 : [x ] 7→ [−x ].

2 If n ≡ 2, 3 (mod 4) with n > 3, then there are infinitely many
conjugacy classes of such involutions σ, all locally linear.

The proof follows from the next three technical theorems.
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Equivariant Rigidity of the Torus, II

Before moving on, consider the following surgery-theoretic concept.

Definition

Let X be a topological manifold equipped with a cocompact action
of a discrete group Γ. The equivariant structure set STOP(X , Γ)
is the set of equivalence classes of all pairs (M, f ) such that:

M ⊂ R∞ is a manifold equipped with a cocompact Γ-action,

f : M → X is a Γ-equivariant homotopy equivalence.

Here, the pair (M, f ) is equivalent to another such pair (M ′, f ′) if
there exists a Γ-equivariant homeomorphism h : M → M ′ such that
f ′ ◦ h is equivariantly homotopic to f .
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Equivariant Rigidity of the Torus, III

Using Smith theory, we quantify those involutions to count them.

Theorem (Connolly–Davis–Khan, 2010)

The set of conjugacy classes of topological involutions

σ : T n → T n such that σ∗ = −id on H1(T n)

is in bijective correspondence with the equivariant structure set

STOP(T n,C2).

Here, the action of C2 on T n = S1 × · · · × S1 is generated by

σ0 : (z1, . . . , zn) 7→ (z1, . . . , zn).
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Equivariant Rigidity of the Torus, IV

Consider the associated crystallographic group Γn acting on Rn:

Γn := Zn o−1 C2.

Theorem (Connolly–Davis–Khan, 2010)

Suppose n ≥ 4 and write ε := (−1)n. Then

STOP(T n,C2) ∼= STOP(Rn, Γn) ∼=
⊕

UNiln+ε(D).

Here, the direct sum is indexed by conjugacy classes (D) of
maximal infinite dihedral subgroups D ∼= D∞ of Γn.
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Equivariant Rigidity of the Torus, V

The above abelian groups have already been calculated.

Theorem (Banagl–Connolly–Davis–Ranicki, 2004)

For each integer m, there is an isomorphism

UNilm(D∞) ∼=


0 if m ≡ 0 (mod 4)

0 if m ≡ 1 (mod 4)

(Z/2Z)⊕∞ if m ≡ 2 (mod 4)

(Z/2Z⊕ Z/4Z)⊕∞ if m ≡ 3 (mod 4).

The last two answers are given by generalized Arf invariants.
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Equivariant Rigidity of CAT(0) Manifolds, I

The Borel Conjecture has an equivariant generalization.

Conjecture (Quinn, 1986, modified from original)

Let Γ be a discrete group with no elements of order two.
Let X and M be topological manifolds without boundary
equipped with cocompact, proper actions of Γ such that:

X is a model for the classifying space E Γ = EfinΓ,

each fixed set of X and of M is a locally flat submanifold, and

each fixed set of X has codimension ≥ 3 in bigger fixed sets.

Let f : M → X be a simple Γ-isovariant homotopy equivalence.
Then f is isovariantly homotopic to a homeomorphism.

In this case, we say (X , Γ) is isovariantly topologically rigid.
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Equivariant Rigidity of CAT(0) Manifolds, II

Here, we mean “simple” in the equivariant sense.

Definition (Steinberger, Prassidis)

Let Γ be a discrete group. Let M and X be cocompact Γ-ANRs.
Suppose f : M → X is a Γ-equivariant homotopy equivalence. We
say that f is simple if the the torsion τ(f ) := f∗(Cyl(f ),M)
represents the zero element in the abelian group Whtop(X , Γ).
Here, a strong Γ-deformation retraction pair (Y ,X ) represents zero
if there exist Γ-cell-like pairs (Y ′,Y ) and (Y ′,X ).

Remark

If we drop the “simple” hypothesis in the previous conjecture, then
counterexamples were constructed by Connolly–Koźniewski (1991).
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Equivariant Rigidity of CAT(0) Manifolds, III

Now, consider the following case with very little stratified data.

Definition

Let X be a topological space equipped with an action of group Γ.
The action is pseudofree if the singular set Xsing is discrete:

Xsing := {x ∈ X | Γx 6= 1}.
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Equivariant Rigidity of CAT(0) Manifolds, IV

Modern tools allow now an initial attack on Equivariant Rigidity.

Theorem (Connolly–Khan, 2010)

Let X be a topological manifold of dimension n ≥ 5 equipped with
a CAT(0) metric. Let Γ be a discrete group of isometries of X .
Suppose the action is cocompact, proper, and pseudofree. Then

STOP(X , Γ) ∼=
⊕

UNiln+1(D, ε).

Here, the direct sum is indexed by conjugacy classes (D) of
maximal infinite dihedral subgroups D ∼= D∞ of Γ. Also, the
orientation character ε : Γ→ {±1} is given by g 7→ deg(g).
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maximal infinite dihedral subgroups D ∼= D∞ of Γ. Also, the
orientation character ε : Γ→ {±1} is given by g 7→ deg(g).
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Thus we affirm Quinn’s Conjecture in the following special case.

Corollary (Connolly–Khan, 2010)

Let X be a topological manifold of dimension ≥ 5 equipped with
a CAT(0) metric. Let Γ be a discrete group of isometries of X
with no elements of order two. Suppose the action is cocompact,
proper, and pseudofree. Then X is equivariantly topologically rigid.

Consequently, we generalize the Bartels–Lück Theorem, which is
the case when Γ is torsion-free. Our ideas further develop the
topological application of their recent solution to the Farrell–Jones
Conjecture. This is a powerful algebraic tool we discuss next time...
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