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Today’s talk

(I) Existence or nonexistence results on isovariant maps,

in particular, Borsuk-Ulam type results.

(II) Classification results on isovariant maps,

in particular, Hopf type results.
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Isovariant maps

Let G be a compact Lie group. All maps are assumed to be

continuous.

Definition. A G-map f : X → Y between G-spaces is

called G-isovariant if Gf(x) = Gx for all x ∈ X.

Example.

(1) If both X and Y are free G-spaces, then an arbitrary

G-map is a G-isovariant map.

(2) Suppose X is a G-space with nontrivial action and

Y is a G-space with Y G 6= ∅. In this case, a map

f : X → Y G ⊂ Y is equivariant, but not isovariant.
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Isovariant homotopy classes

Definition. A G-homotopy F : X × I → Y is called a

G-isovariant homotopy if F is G-isovariant.

Let [X,Y ]isov
G denote the set of isovariant homotopy classes

of G-isovariant maps from X to Y .

As usual, [X, Y ]G denotes the set of G-homotopy classes of

G-maps from X to Y .
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Notation

(1) Cn : a cyclic group of order n.

(2) Uk (= C), k ∈ Z: the unitary 1-dimensional repre-

sentation of Cn on which a generator c ∈ Cn acts by

c · z = ξk
nz, where z ∈ Uk and ξn = exp(2π

√
−1/n).

(3) SV : the unit sphere of a representation V of G, which

is called a representation sphere or linear G-sphere.
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An existence problem

Let G = Cpq, where p, q are distinct primes.

Set

Ur
1 = U1 ⊕ · · · ⊕ U1 (r times)

and

W = Up ⊕ Uq.

Note that G acts freely on SUr
1 , but not freely on SW .

In fact, the singular set (nonfree part) of SW :

SW>1 = SWCp
∪

SWCq = SUp

∐
SUq.
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An existence problem

In equivariant case, as an application of equivariant

obstruction theory, one can see that, for any r ≥ 1, there

exists a Cpq-map

g : SUr
1 → S(Up ⊕ Uq).

Question. What about a Cpq-isovariant map?

Does there exist a Cpq-isovariant map from SUr
1 to SW?
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The answer

If r = 1, then there is an isovariant map. For example, one

can define an isovariant map f0,0 : SU1 → SW by

f0,0(z) = (zp, zq)/
√

2.

(In fact, f0,0 is a G-embedding.)

When r ≥ 2, the answer is “No.”

This is shown by a Borsuk-Ulam type theorem.
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Borsuk Ulam type theorems

In transformation group theory, the classical Borsuk-Ulam

theorem is stated as follows.

Theorem 1. Let Sm and Sn be spheres with antipodal

C2-action. If there is a C2-map f : Sm → Sn, then the

inequality m ≤ n holds.

Thus the Borsuk-Ulam theorem provides the nonexistence of

a C2-map. In fact, if m > n, then there is no C2-map from

Sm to Sn.
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A generalization of the Borsuk-Ulam theorem

Many generalizations of the Borsuk-Ulam theorem are known.

The following is one of them.

Theorem 2 (N-Hara-Kawakami-Ushitaki, Biasi-de Mattos).

Let X be a free Cn-space and Y a Hausdorff free Cn-space.

Suppose that there exists m ≥ 1 such that

H̃q(X; Z/n) = 0 for 0 ≤ q ≤ m, and

Hm+1(Y/Cn; Z/n) = 0.

Then there is no Cn-map from X to Y .

Here the homology is the singular homology.

9



A generalization of the Borsuk-Ulam theorem

This theorem deduces a well-known result below.

Corollary 3 (mod p Borsuk-Ulam theorem). Assume that

Cp (p: prime) acts freely on X with H∗(X; Z/p) ∼=
H∗(Sm; Z/p) and on (Hausdorff) Y with H∗(Y ; Z/p) ∼=
H∗(Sn; Z/p). If there is a Cp-map f : X → Y , then m ≤ n.

In other words, if m > n, then there is no Cp-map from X

to Y .
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Proof of the nonexistence

It suffices to show this when r = 2. Suppose

f : SU2
1 = S(U1 ⊕ U1) → S(Up ⊕ Uq) = SW

is an isovariant map.

By restricting the action, we get a Cp-map f : SU2
1 →

SW \ SWCp

Since SW \SWCp ' S1, SW \SWCp is a free Cp-homology

sphere of (homological) dimension 1.

By the mod p Borsuk-Ulam theorem, we have dimSU2
1 ≤ 1,

however this is a contradiction.
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Homologically linear actions

The above example is generalized.

Set

RG =

{
Z/|G| if dimG = 0,

Z if dimG > 0.

Definition. A smooth closed G-manifolds Σ is called

an RG-homologically linear G-sphere if for every (closed)

subgroup H, the H-fixed point set ΣH is an RG-homology

sphere or the empty set; namely,

H∗(ΣH; RG) ∼= H∗(Sm(H); RG), m(H) = dim ΣH.

For convenience, we set dimΣH = −1 if ΣH is empty.
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More general results

Then we have

Theorem 4 (Isovariant Borsuk-Ulam theorem). Let G be

a solvable compact Lie group. Let Σ1 and Σ2 be RG-

homologically linear G-spheres. If there is a G-isovariant

map f : Σ1 → Σ2, then the inequality

dimΣ1 − dimΣG
1 ≤ dimΣ2 − dimΣG

2

holds.

Remark. Wasserman first proved this result for represen-

tation spheres.
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Nonsolvable case

Using a result of Oliver, we have

Proposition 5. If G is nonsolvable, then there exists a

sequence

· · · hn−−→ Σn
hn−1−−−→ Σn−1

hn−2−−−→ · · · h1−→ Σ1

such that

• each Σn is a homologically linear G-sphere

(in fact Σn can be taken to be a semilinear G-sphere),

• each hn is a G-isovariant map,

• ΣG
n = ∅ and limn→∞ dimΣn = ∞.
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Nonsolvable case

Take a G-embedding i : Σ1 ⊂ SW for some representation

W . Then an isovariant map fn : Σn → SW is defined by

composition.

Thus there is an integer n0 such that

dimΣn + 1 > dim SW − dimSWG for any n > n0.

This shows that the isovariant Borsuk-Ulam theorem does

not hold for a nonsolvable compact Lie group G.
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Remark

Hence, for RG-homologically linear actions, the isovariant

Borsuk-Ulam theorem holds if and only if G is solvable.

Remark. The problem whether the above Σn can be taken

to be a linear G-sphere is still open.

In equivariant case, the following is known.

Proposition 6 (Bartsch). Let G be a finite group. the

Borsuk-Ulam theorem (in a weak sense) holds if and only if

G is of prime power order.
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Corollary

Another result is obtained from the isovariant Borsuk-Ulam

theorem.

Corollary 7 (N-Ushitaki). Let G be a finite group and Σ
an RG-homology sphere with free G-action. Let SW be the

representation sphere of a representation W of G. If there is

a G-isovariant map f : Σ → SW , then the inequality

dimΣ + 1 ≤ dim SW − dimSW>1,

where SW>1 =
∪

1 6=H≤G SWH (the singular set).

Remark. This result still holds when G = S1, Pin(2) ∼=
NS3(S1). However, in the case of G = S3, it is unknown.
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Existence results

The isovariant Borsuk-Ulam theorem provides nonexistence

results of isovariant maps.

we here discuss an existence problem under some conditions.

As is seen before, there is a Cpq-isovariant map

f0,0 : SU1 → S(Up ⊕ Uq).

This is generalized as follows.
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Existence results

Proposition 8. Let M be a free G-manifold. Let W be a

representation of G. Suppose

dim M/G + 1 ≤ dimSW − dimSW>1.

Then there exists a G-isovariant map from M to SW .

Outline of Proof.

Set SWfree = SW \ SW>1 and d = dim SW − dimSW>1.

Fact. SWfree is (d − 2)-connected.
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Existence results

It suffices to construct a G-map from M to SWfree.

Fix a G-CW complex structure of M . One can inductively

construct a G-map as follows.

Suppose that a G-map fk : Xk → SWfree is constructed on

the k-skeleton Xk of M .

Let Xk+1 = Xk ∪φ G × Dk+1 ∪ · · · . Then

fk ◦ φ|∂Dk+1 : 1 × ∂Dk+1 → SWfree

is extended to fk+1| : Dk+1 → SWfree, since k ≤ d − 2 and

SWfree is (d− 2)-connected. Hence fk equivariantly extends

to a G-map fk+1 : Xk+1 → SWfree.
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Classification problem — An example

Next we discuss a classification problem. Let G = Cpq.

Recall the isovariant map

f0,0 : SU1 → SW = S(Up ⊕ Uq)

f0,0(z) = (zp, zq)/
√

2.

One can find other isovariant maps. Indeed, a map fα,β :
SU1 → SW defined by

fα,β(z) = (zp(1+αq), zq(1+βp))/
√

2,

fα,β is G-isovariant for (α, β) ∈ Z2.

Question. Do these maps represent different isovariant

homotopy classes?
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Classification problem — An example

The answer is “Yes.” In fact,

Proposition 9. If fα,β and fα′,β′ are isovariantly homotopic,

then (α, β) = (α′, β′).

In order to show this, we introduce the multidegree as an

isovariant homotopy invariant.

If f is an isovariant map, then we obtain a G-map f : SU1 →
SWfree.

Consider the induced homomorphism

f∗ : H1(SU1) → H1(SWfree).
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Classification problem — An example

Lemma 10.

π1(SWfree) ∼= H1(SWfree) ∼= Z ⊕ Z.

Proof. SWfree = SW \(SUp∪SUq) ∼= (U⊥
p −0)×(U⊥

q −0) '
SUq × SUp.

We define the multidegree mDeg (f) of f by

mDeg (f) = f∗([SU1]) ∈ Z ⊕ Z.
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Classification problem — An example

The multidegree of fα,β is

mDeg fα,β = (q(1 + βp), p(1 + αq)).

This shows that if (α, β) 6= (α′, β′), then mDeg fα,β 6=
mDeg fα′,β′.

Hence the isovariant maps fα,β represent different isovariant

homotopy classes.
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Classification problem — An example

In this case, the converse is true; in fact,

Proposition 11. Let f , g : SU1 → SW be isovariant

maps. If mDeg f = mDeg g, then f and g are isovariantly

homotopic.

Outline of Proof.

Set G = Cpq.

It suffices to construct a G-homotopy F : SU1×I → SWfree

between f and g.
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Classification problem — An example

Consider the commutative diagram:

[SU1, SWfree]G
γG−−→∼=

H1(SU1/G, π1) = Z2

ε

y yπ∗

[SU1, SWfree]
∼=−→
γ

H1(SU1, π1) = Z2,

where π1 = π1(SWfree) = Z2. The vertical map ε is the

forgetful map and π : SU1 → SU1/G is the orbit map.
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Classification problem — An example

[SU1, SWfree]G
γG−−→∼=

H1(SU1/G, π1) = Z2

ε

y yπ∗

[SU1, SWfree]
∼=−→
γ

H1(SU1, π1) = Z2,

Fix a G-map g : SU1 → SWfree. The horizontal maps are

defined by

γG([f ]) = oG(f, g) and γ([f ]) = o(f, g),

which are bijections as a consequence of the equivariant

obstruction theory.
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Classification problem — An example

[SU1, SWfree]G
γG−−→∼=

H1(SU1/G, π1) = Z2

ε

y yπ∗

[SU1, SWfree]
∼=−→
γ

H1(SU1, π1) = Z2,

One can see that

π∗ is multiplication by pq

and

π∗(oG(f, g)) = o(f, g).

28



Classification problem — An example

[SU1, SWfree]G
γG−−→∼=

H1(SU1/G, π1) = Z2

ε

y yπ∗

[SU1, SWfree]
∼=−→
γ

H1(SU1, π1) = Z2,

Hence π∗ is injective, and the forgetful map ε is injective.

By calculation of the obstruction class, we have

γ([f ]) = o(f, g) = mDeg f − mDeg g.

Hence if mDeg f = mDeg g, then we have oG(f, g) = 0 and

so a G-map f
∐

g extends to a G-homotopy F .
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A classification result

Furthermore it is seen that

mDeg f − mDeg g ∈ pqZ2.

Taking g = f0,0, we can define an injective map

D : [SU1, SWfree]G → Z ⊕ Z

by D[f ] = (mDeg f − mDeg f0,0)/pq.

Since D([fα,β]) = (β, α), it follows that D is surjective.

Hence D is a bijection.
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A classification result

Thus we have the following classification result.

Proposition 12. There is a one-to-one correspondence

D : [SU1, SW ]isov
G → Z ⊕ Z.

In particular, the maps fα,β represent all isovariant homotopy

classes.

Using the notion of degree, H. Hopf showed that

deg : [M, Sn] → Z

is a bijection for an orientable closed n-manifold M . We call

this sort of result a Hopf type theorem.
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A Hopf type theorem

The above example is generalized as follows.

We assume the following.

• G is a finite group.

• M is a connected, closed free G-manifold.

• SW is a unitary representation sphere of G.

• dimM + 1 = dim SW − dimSW>1.

Notation

• A = {H ∈ Iso W | dim SWH = dim SW>1 }.

• A/G = { (H) |H ∈ A}.
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A Hopf type theorem

Theorem 13 (Isovariant Hopf theorem). With the above

assumption

(1) If M is orientable and the G-action on M is orientation-

preserving, then there is a one-to-one correspondence

[M,SW ]isov
G

∼=
⊕

(H)∈A/G

Z.

Every isovariant homotopy class is determined by the

multidegree.
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A Hopf type theorem

(2) If M is non-orientable, then there is a one-to-one

correspondence

[M, SW ]isov
G

∼=
⊕

(H)∈A/G

Z/2.

If G is of odd order, then every isovariant homotopy

class is determined by the mod 2 multidegree.
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Further results

(1) In the case where M is orientable, if the G-action is

not orientation-preserving, then some Z/2 components

appear in [M, SW ]isov
G , and the multidegree does not

determine the isovariant homotopy classes.

[M, SW ]isov
G

∼=
⊕

Z ⊕
⊕

Z/2.

(2) In the case where M is non-orientable, if G is not of

odd order, then the mod 2 multidegree does not always

determine the isovariant homotopy classes.
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