On the existence and classification of isovariant maps

Ikumitsu NAGASAKI Kyoto Prefectural University of Medicine (KPUM)

Sept. 2, 2010

Today's talk

- (I) Existence or nonexistence results on isovariant maps, in particular, Borsuk-Ulam type results.
- (II) Classification results on isovariant maps, in particular, Hopf type results.

Isovariant maps

Let G be a compact Lie group. All maps are assumed to be continuous.

Definition. A *G*-map $f : X \to Y$ between *G*-spaces is called *G*-isovariant if $G_{f(x)} = G_x$ for all $x \in X$.

Example.

- (1) If both X and Y are free G-spaces, then an arbitrary G-map is a G-isovariant map.
- (2) Suppose X is a G-space with nontrivial action and Y is a G-space with $Y^G \neq \emptyset$. In this case, a map $f: X \to Y^G \subset Y$ is equivariant, but not isovariant.

Isovariant homotopy classes

Definition. A *G*-homotopy $F : X \times I \rightarrow Y$ is called a *G*-isovariant homotopy if *F* is *G*-isovariant.

Let $[X, Y]_G^{isov}$ denote the set of isovariant homotopy classes of G-isovariant maps from X to Y.

As usual, $[X, Y]_G$ denotes the set of G-homotopy classes of G-maps from X to Y.

Notation

- (1) C_n : a cyclic group of order n.
- (2) $U_k \ (= \mathbb{C}), \ k \in \mathbb{Z}$: the unitary 1-dimensional representation of C_n on which a generator $c \in C_n$ acts by $c \cdot z = \xi_n^k z$, where $z \in U_k$ and $\xi_n = \exp(2\pi \sqrt{-1}/n)$.
- (3) SV: the unit sphere of a representation V of G, which is called a representation sphere or linear G-sphere.

An existence problem

Let $G = C_{pq}$, where p, q are distinct primes. Set

$$U_1^r = U_1 \oplus \cdots \oplus U_1 \ (r \text{ times})$$

and

$$W = U_p \oplus U_q.$$

Note that G acts freely on SU_1^r , but not freely on SW. In fact, the singular set (nonfree part) of SW:

$$SW^{>1} = SW^{C_p} \bigcup SW^{C_q} = SU_p \coprod SU_q.$$

An existence problem

In equivariant case, as an application of equivariant obstruction theory, one can see that, for any $r \ge 1$, there exists a C_{pq} -map

$$g: SU_1^r \to S(U_p \oplus U_q).$$

Question. What about a C_{pq} -isovariant map?

Does there exist a C_{pq} -isovariant map from SU_1^r to SW?

The answer

If r = 1, then there is an isovariant map. For example, one can define an isovariant map $f_{0,0}: SU_1 \to SW$ by

$$f_{0,0}(z) = (z^p, z^q)/\sqrt{2}.$$

(In fact, $f_{0,0}$ is a *G*-embedding.)

When $r \geq 2$, the answer is "No."

This is shown by a Borsuk-Ulam type theorem.

Borsuk Ulam type theorems

In transformation group theory, the classical Borsuk-Ulam theorem is stated as follows.

Theorem 1. Let S^m and S^n be spheres with antipodal C_2 -action. If there is a C_2 -map $f : S^m \to S^n$, then the inequality $m \leq n$ holds.

Thus the Borsuk-Ulam theorem provides the nonexistence of a C_2 -map. In fact, if m > n, then there is no C_2 -map from S^m to S^n .

A generalization of the Borsuk-Ulam theorem

Many generalizations of the Borsuk-Ulam theorem are known. The following is one of them.

Theorem 2 (N-Hara-Kawakami-Ushitaki, Biasi-de Mattos). Let X be a free C_n -space and Y a Hausdorff free C_n -space. Suppose that there exists $m \ge 1$ such that

$$\widetilde{H}_q(X;\mathbb{Z}/n)=0$$
 for $0\leq q\leq m,$ and

 $H_{m+1}(Y/C_n; \mathbb{Z}/n) = 0.$

Then there is no C_n -map from X to Y.

Here the homology is the singular homology.

A generalization of the Borsuk-Ulam theorem

This theorem deduces a well-known result below.

Corollary 3 (mod p Borsuk-Ulam theorem). Assume that C_p (p: prime) acts freely on X with $H_*(X; \mathbb{Z}/p) \cong H_*(S^m; \mathbb{Z}/p)$ and on (Hausdorff) Y with $H_*(Y; \mathbb{Z}/p) \cong H_*(S^n; \mathbb{Z}/p)$. If there is a C_p -map $f: X \to Y$, then $m \leq n$.

In other words, if m > n, then there is no C_p -map from X to Y.

Proof of the nonexistence

It suffices to show this when r = 2. Suppose

$$f: SU_1^2 = S(U_1 \oplus U_1) \to S(U_p \oplus U_q) = SW$$

is an isovariant map.

By restricting the action, we get a $C_p\text{-map}\ f:SU_1^2\to SW\setminus SW^{C_p}$

Since $SW \setminus SW^{C_p} \simeq S^1$, $SW \setminus SW^{C_p}$ is a free C_p -homology sphere of (homological) dimension 1.

By the mod p Borsuk-Ulam theorem, we have $\dim SU_1^2 \leq 1$, however this is a contradiction.

Homologically linear actions

The above example is generalized.

Set

$$R_G = \begin{cases} \mathbb{Z}/|G| & \text{if } \dim G = 0, \\ \mathbb{Z} & \text{if } \dim G > 0. \end{cases}$$

Definition. A smooth closed *G*-manifolds Σ is called an R_G -homologically linear *G*-sphere if for every (closed) subgroup *H*, the *H*-fixed point set Σ^H is an R_G -homology sphere or the empty set; namely,

 $H_*(\Sigma^H; R_G) \cong H_*(S^{m(H)}; R_G), \ m(H) = \dim \Sigma^H.$

For convenience, we set $\dim \Sigma^H = -1$ if Σ^H is empty.

More general results

Then we have

Theorem 4 (Isovariant Borsuk-Ulam theorem). Let G be a solvable compact Lie group. Let Σ_1 and Σ_2 be R_G homologically linear G-spheres. If there is a G-isovariant map $f: \Sigma_1 \to \Sigma_2$, then the inequality

$$\dim \Sigma_1 - \dim \Sigma_1^G \le \dim \Sigma_2 - \dim \Sigma_2^G$$

holds.

Remark. Wasserman first proved this result for representation spheres.

Nonsolvable case

Using a result of Oliver, we have

Proposition 5. If G is nonsolvable, then there exists a sequence

$$\cdots \xrightarrow{h_n} \Sigma_n \xrightarrow{h_{n-1}} \Sigma_{n-1} \xrightarrow{h_{n-2}} \cdots \xrightarrow{h_1} \Sigma_1$$

such that

- each Σ_n is a homologically linear G-sphere (in fact Σ_n can be taken to be a semilinear G-sphere),
- each h_n is a G-isovariant map,
- $\Sigma_n^G = \emptyset$ and $\lim_{n \to \infty} \dim \Sigma_n = \infty$.

Nonsolvable case

Take a *G*-embedding $i: \Sigma_1 \subset SW$ for some representation *W*. Then an isovariant map $f_n: \Sigma_n \to SW$ is defined by composition.

Thus there is an integer n_0 such that

 $\dim \Sigma_n + 1 > \dim SW - \dim SW^G \text{ for any } n > n_0.$

This shows that the isovariant Borsuk-Ulam theorem does not hold for a nonsolvable compact Lie group G.

Remark

Hence, for R_G -homologically linear actions, the isovariant Borsuk-Ulam theorem holds if and only if G is solvable.

Remark. The problem whether the above Σ_n can be taken to be a linear *G*-sphere is still open.

In equivariant case, the following is known.

Proposition 6 (Bartsch). Let G be a finite group. the Borsuk-Ulam theorem (in a weak sense) holds if and only if G is of prime power order.

Corollary

Another result is obtained from the isovariant Borsuk-Ulam theorem.

Corollary 7 (N-Ushitaki). Let G be a finite group and Σ an R_G -homology sphere with free G-action. Let SW be the representation sphere of a representation W of G. If there is a G-isovariant map $f: \Sigma \to SW$, then the inequality

 $\dim \Sigma + 1 \le \dim SW - \dim SW^{>1},$

where $SW^{>1} = \bigcup_{1 \neq H \leq G} SW^H$ (the singular set).

Remark. This result still holds when $G = S^1$, $Pin(2) \cong N_{S^3}(S^1)$. However, in the case of $G = S^3$, it is unknown.

Existence results

The isovariant Borsuk-Ulam theorem provides nonexistence results of isovariant maps.

we here discuss an existence problem under some conditions.

As is seen before, there is a C_{pq} -isovariant map

 $f_{0,0}: SU_1 \to S(U_p \oplus U_q).$

This is generalized as follows.

Existence results

Proposition 8. Let M be a free G-manifold. Let W be a representation of G. Suppose

 $\dim M/G + 1 \le \dim SW - \dim SW^{>1}.$

Then there exists a G-isovariant map from M to SW.

Outline of Proof.

Set $SW_{\text{free}} = SW \setminus SW^{>1}$ and $d = \dim SW - \dim SW^{>1}$. Fact. SW_{free} is (d-2)-connected.

Existence results

It suffices to construct a G-map from M to SW_{free} .

Fix a G-CW complex structure of M. One can inductively construct a G-map as follows.

Suppose that a *G*-map $f_k : X_k \to SW_{\text{free}}$ is constructed on the *k*-skeleton X_k of *M*.

Let
$$X_{k+1} = X_k \cup_{\phi} G \times D^{k+1} \cup \cdots$$
. Then

$$f_k \circ \phi | \partial D^{k+1} : 1 \times \partial D^{k+1} \to SW_{\text{free}}$$

is extended to $f_{k+1}|: D^{k+1} \to SW_{\text{free}}$, since $k \leq d-2$ and SW_{free} is (d-2)-connected. Hence f_k equivariantly extends to a *G*-map $f_{k+1}: X_{k+1} \to SW_{\text{free}}$.

Next we discuss a classification problem. Let $G = C_{pq}$. Recall the isovariant map

$$f_{0,0}: SU_1 \to SW = S(U_p \oplus U_q)$$

 $f_{0,0}(z) = (z^p, z^q)/\sqrt{2}.$

One can find other isovariant maps. Indeed, a map $f_{\alpha,\beta}:$ $SU_1\to SW$ defined by

$$f_{\alpha,\beta}(z) = (z^{p(1+\alpha q)}, z^{q(1+\beta p)})/\sqrt{2},$$

 $f_{\alpha,\beta}$ is G-isovariant for $(\alpha,\beta) \in \mathbb{Z}^2$.

Question. Do these maps represent different isovariant homotopy classes?

The answer is "Yes." In fact,

Proposition 9. If $f_{\alpha,\beta}$ and $f_{\alpha',\beta'}$ are isovariantly homotopic, then $(\alpha,\beta) = (\alpha',\beta')$.

In order to show this, we introduce the *multidegree* as an isovariant homotopy invariant.

If f is an isovariant map, then we obtain a $G\text{-map}\;f:SU_1\to SW_{\rm free}.$

Consider the induced homomorphism

$$f_*: H_1(SU_1) \to H_1(SW_{\text{free}}).$$

Lemma 10.

$$\pi_1(SW_{\text{free}}) \cong H_1(SW_{\text{free}}) \cong \mathbb{Z} \oplus \mathbb{Z}.$$

Proof. $SW_{\text{free}} = SW \setminus (SU_p \cup SU_q) \cong (U_p^{\perp} - 0) \times (U_q^{\perp} - 0) \simeq$ $SU_q \times SU_p.$

We define the multidegree mDeg(f) of f by

$$\operatorname{mDeg}(f) = f_*([SU_1]) \in \mathbb{Z} \oplus \mathbb{Z}.$$

The multidegree of $f_{\alpha,\beta}$ is

mDeg
$$f_{\alpha,\beta} = (q(1+\beta p), p(1+\alpha q)).$$

This shows that if $(\alpha, \beta) \neq (\alpha', \beta')$, then $\operatorname{mDeg} f_{\alpha,\beta} \neq \operatorname{mDeg} f_{\alpha',\beta'}$.

Hence the isovariant maps $f_{\alpha,\beta}$ represent different isovariant homotopy classes.

In this case, the converse is true; in fact,

Proposition 11. Let $f, g : SU_1 \rightarrow SW$ be isovariant maps. If mDeg f = mDeg g, then f and g are isovariantly homotopic.

Outline of Proof.

Set $G = C_{pq}$.

It suffices to construct a G-homotopy $F: SU_1 \times I \to SW_{\text{free}}$ between f and g.

Consider the commutative diagram:

where $\pi_1 = \pi_1(SW_{\text{free}}) = \mathbb{Z}^2$. The vertical map ε is the forgetful map and $\pi: SU_1 \to SU_1/G$ is the orbit map.

Fix a $G\text{-map }g:SU_1\to SW_{\rm free}.$ The horizontal maps are defined by

$$\gamma_G([f]) = \mathfrak{o}_G(f,g) \text{ and } \gamma([f]) = \mathfrak{o}(f,g),$$

which are bijections as a consequence of the equivariant obstruction theory.

One can see that

 π^* is multiplication by pq

 and

$$\pi^*(\mathfrak{o}_G(f,g)) = \mathfrak{o}(f,g).$$

Hence π^* is injective, and the forgetful map ε is injective. By calculation of the obstruction class, we have

$$\gamma([f]) = \mathfrak{o}(f, g) = \mathrm{mDeg} f - \mathrm{mDeg} g.$$

Hence if $\operatorname{mDeg} f = \operatorname{mDeg} g$, then we have $\mathfrak{o}_G(f,g) = 0$ and so a *G*-map $f \coprod g$ extends to a *G*-homotopy *F*.

A classification result

Furthermore it is seen that

$$mDeg f - mDeg g \in pq\mathbb{Z}^2.$$

Taking $g = f_{0,0}$, we can define an injective map

 $D: [SU_1, SW_{\text{free}}]_G \to \mathbb{Z} \oplus \mathbb{Z}$

by $D[f] = (\text{mDeg } f - \text{mDeg } f_{0,0})/pq$.

Since $D([f_{\alpha,\beta}]) = (\beta, \alpha)$, it follows that D is surjective. Hence D is a bijection.

A classification result

Thus we have the following classification result.

Proposition 12. There is a one-to-one correspondence

 $D: [SU_1, SW]_G^{isov} \to \mathbb{Z} \oplus \mathbb{Z}.$

In particular, the maps $f_{\alpha,\beta}$ represent all isovariant homotopy classes.

Using the notion of degree, H. Hopf showed that

$$\deg: [M, S^n] \to \mathbb{Z}$$

is a bijection for an orientable closed n-manifold M. We call this sort of result a *Hopf type theorem*.

A Hopf type theorem

The above example is generalized as follows.

We assume the following.

- G is a finite group.
- M is a connected, closed *free* G-manifold.
- SW is a *unitary* representation sphere of G.
- dim $M + 1 = \dim SW \dim SW^{>1}$.

Notation

- $\mathcal{A} = \{ H \in \operatorname{Iso} W \mid \dim SW^H = \dim SW^{>1} \}.$
- $\mathcal{A}/G = \{ (H) \mid H \in \mathcal{A} \}.$

A Hopf type theorem

Theorem 13 (Isovariant Hopf theorem). With the above assumption

(1) If M is orientable and the G-action on M is orientationpreserving, then there is a one-to-one correspondence

$$[M, SW]_G^{isov} \cong \bigoplus_{(H) \in \mathcal{A}/G} \mathbb{Z}.$$

Every isovariant homotopy class is determined by the multidegree.

A Hopf type theorem

(2) If M is non-orientable, then there is a one-to-one correspondence

$$[M, SW]_G^{isov} \cong \bigoplus_{(H) \in \mathcal{A}/G} \mathbb{Z}/2.$$

If G is of odd order, then every isovariant homotopy class is determined by the mod 2 multidegree.

Further results

(1) In the case where M is orientable, if the G-action is not orientation-preserving, then some $\mathbb{Z}/2$ components appear in $[M, SW]_G^{isov}$, and the multidegree does not determine the isovariant homotopy classes.

$$[M, SW]_G^{\mathsf{isov}} \cong \bigoplus \mathbb{Z} \oplus \bigoplus \mathbb{Z}/2.$$

(2) In the case where M is non-orientable, if G is not of odd order, then the mod 2 multidegree does not always determine the isovariant homotopy classes.