SURGERY AND GEOMETRY

Josai University

Masayuki YAMASAKI

an n-dim (topological) manifold

$=$ a subset of \mathbb{R}^{N} locally homeomorphic to \mathbb{R}^{n}

will only consider oriented manifolds in this talk

SURGERY

$M: n$-dim manifold
$H=D^{i} \times D^{n+1-i}:(n+1)$-dim i-handle

$W=M \times[0,1]$

$$
\partial_{0} W=M
$$

Can change a given "map" $f: M^{n} \rightarrow X^{n}$ into a htpy equiv. using surgery?

Given Map:

Method 1: attach a 2-handle

Given Map:

Method 2: attach a 1-handle

Surgery Obstruction

a degree 1 normal map

$$
\Longrightarrow \sigma(f) \in L_{n}\left(\mathbb{Z} \pi_{1} X\right)
$$

$$
f: M^{n} \rightarrow X^{n}
$$

A normal map is a map $f: M \rightarrow X$ together with a stable TOP bundle map $b: \nu_{M} \rightarrow \eta$ to some TOP bundle η over X covering f.

Notation for later use
$\mathrm{TOP}_{n}=\left\{h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right.$; homeo., $\left.h(O)=O\right\}$
B TOP : the classifying sp. of stable TOP bundles
$G_{n}=\left\{h: S^{n-1} \rightarrow S^{n-1} ;\right.$ htpy equiv. $\}$
$B G$: the classifying sp. of stable spherical fibrations
$G /$ TOP : htpy fiber of B TOP $\rightarrow B G$

Assume $n \geqq 5$.
$\sigma(f)=0 \quad \Longrightarrow$
can change f into a htpy equiv. by surgery

Similarly for manifolds w/ boundary.

$$
\left.\begin{array}{c}
f:\left(M^{n}, \partial M\right) \longrightarrow\left(X^{n}, \partial X\right) \\
\partial f: \partial M \xrightarrow{\simeq} \partial X
\end{array}\right\} \Rightarrow \sigma(f) \in L_{n+1}(\mathbb{Z} \pi)
$$

$\sigma(f)=0 \quad \Longrightarrow \quad$ surgery rel ∂ is possible

Summary: Surgery Exact Sequence

$$
\rightarrow \mathcal{S}(X \times I, \partial) \rightarrow \mathcal{N}(X \times I, \partial) \rightarrow L_{n+1}(\mathbb{Z} \pi)
$$

$$
\longrightarrow \mathcal{S}(X) \longrightarrow \mathcal{N}(X) \longrightarrow L_{n}(\mathbb{Z} \pi)
$$

$\mathcal{S}(X)=\left\{f: M^{n} \xrightarrow{\simeq} X\right\} / \sim$
$\mathcal{N}(X)=\left\{f: M^{n} \rightarrow X\right.$ degree 1 normal map $\} / \sim$
Require that f be a homeo. on the boundary.

Equiv. Rel. \sim in the def. of $\mathcal{S}(X)$:

$$
\begin{aligned}
& f_{0}: M_{0} \xrightarrow{\simeq} X \sim f_{1}: M_{1} \xrightarrow{\simeq} X \quad \Longleftrightarrow \\
& \exists W ; \partial W=M_{0} \cup M_{1}, \quad \exists F: W \xrightarrow{\simeq} X \times[0,1] \\
& \quad F\left|M_{0}=f_{0}, \quad F\right| M_{1}=f_{1}
\end{aligned}
$$

$f_{0}: M_{0} \xrightarrow{\simeq} X \sim f_{1}: M_{1} \xrightarrow{\simeq} X$
$\Longrightarrow \quad\left(W ; M_{0}\right)$ is an h-cobordism
If $W h\left(\pi_{1}(X)\right)=0$ and $n \geq 5$,

$$
\begin{aligned}
& \Longrightarrow \quad W \cong M_{0} \times I(s \text {-cobordism theorem }) \\
& \Longrightarrow \quad M_{0} \cong M_{1}
\end{aligned}
$$

$W h(G)$: the Whitehead group of G
$W h(\{1\})=0, W h(\mathbb{Z} \oplus \cdots \oplus \mathbb{Z})=0$

Equiv. Rel. \sim in the def. of $\mathcal{N}(X):$

$f_{0}: M_{0} \rightarrow X \sim f_{1}: M_{1} \rightarrow X$
\Longleftrightarrow
$\exists W ; \partial W=M_{0} \cup M_{1}, \quad \exists F: W \rightarrow X \times[0,1]$

$$
F\left|M_{0}=f_{0}, \quad F\right| M_{1}=f_{1}
$$

$\Longleftrightarrow f_{0}$ can be changed into f_{1} by surgery $(n \neq 4)$

Typical Examples ($n \geqq 5, n=4$: Freedman)

(1) $X=S^{n} \Longrightarrow \mathcal{S}\left(X^{n}\right)=\{0\}$ (Smale, \ldots)
(2) $X=T^{n} \Longrightarrow \mathcal{S}\left(X^{n}\right)=\{0\}$ (Hsiang-Wall)

Any htpy equiv. $M^{n} \rightarrow X^{n}$ is htpic to a homeo.
Generalization?
$(1) \Longrightarrow$ simply-connected manifolds ... No.
$(2) \Longrightarrow$ aspherical manifolds . . . Borel Conjecture.

Borel Conjecture

X^{n} :an aspherical manifold $\left[\pi_{i}(X)=0(i>1)\right]$

Any htpy equiv. $M^{n} \xrightarrow{\simeq} X$ is htpic to a homeo.

Suffices to show $W h\left(\pi_{1} X\right)=0, \mathcal{S}(X)=\{0\}$.
Conj. G : torsion-free $\Longrightarrow W h(G)=0$
Rem. Asperical manifolds have torsion-free π_{1}.

Criterion for $\mathcal{S}(X)=0$:

$$
\mathcal{N}(X \times I, \partial) \xrightarrow{\text { surjective }} L_{n+1}(\mathbb{Z} \pi)
$$

$\longrightarrow \mathcal{S}(X) \longrightarrow \mathcal{N}(X) \xrightarrow{\text { injective }} L_{n}(\mathbb{Z} \pi)$

Will sketch the mechanism ...

Given an $f \in \mathcal{S}(X)$,

$\mathcal{N}(X) \rightarrow L_{n}(\mathbb{Z} \pi):$ injective $\Rightarrow[f]=0 \in \mathcal{N}(X)$

$\mathcal{N}(X \times I, \partial) \longrightarrow L_{n+1}(\mathbb{Z} \pi) \Rightarrow$ can realize $-\sigma$

Now perform surgery to get a htpy equiv.

Ranicki's Quadratic Complexes (QC)

$A=\mathbb{Z} \pi$ or a ring with involution $(x \mapsto \bar{x})$
$L_{j}(A)=\{j$-dim QC over $A\} /$ cobordism
$\mathbb{L}(A)_{0}=$ the space of 0 -dim QC's over A

$$
\Longrightarrow \pi_{j}\left(\mathbb{L}(A)_{0}\right)=L_{j}(A)
$$

a $0-\operatorname{dim} \mathrm{QC}=$ a quadratic form
$=\left(\right.$ a free A-module $\left.K, \psi_{0}: K^{*} \rightarrow K\right)$ s.t. $\psi_{0}+\psi_{0}^{*}: K^{*} \rightarrow K$ an iso.

Delooping of $\mathbb{L}(A)_{0}$

a j-dim QC
$=\left(\mathrm{a} j\right.$-dim cx $\left.C,\left\{\psi_{s}: C^{j-s-*} \rightarrow C_{*} ; s \geq 0\right\}\right)$
s.t. $\psi_{0} \pm \psi_{0}^{*}: C^{j-*} \rightarrow C_{*}$ a chain eq.
$\mathbb{L}(A)_{k}=$ the space of $(-k)$-dim QC's over A (!?)

$$
\begin{aligned}
& \Longrightarrow \Omega \mathbb{L}(A)_{k+1} \simeq \mathbb{L}(A)_{k} \\
& \Longrightarrow \mathbb{L}(A)=\left\{\mathbb{L}(A)_{k}\right\} \text { is an } \Omega \text {-spectrum }
\end{aligned}
$$

0 -simplex $=0$-dim QC
1-simplex $=1$-dim QC with boundary

the only 0 -simplex $=0$ (basepoint)
1-simplex $=0$-dim QC
2 -simplex $=1$-dim QC with ∂, \cdots

Four-periodicity

- $L_{i}(\mathbb{Z} \pi) \cong L_{i+4}(\mathbb{Z} \pi) \quad(i \geqq 0)$
- $\mathcal{N}\left(X \times I^{i+4}, \partial\right) \cong \begin{cases}\mathcal{N}\left(X \times I^{i}, \partial\right) & (i \geqq 1) \\ \mathcal{N}(X) \oplus \mathbb{Z} & (i=0)\end{cases}$
- $\mathcal{S}\left(X \times I^{i+4}, \partial\right) \cong \begin{cases}\mathcal{S}\left(X \times I^{i}, \partial\right) & (i \geqq 1) \\ \mathcal{S}(X) \text { or } \mathcal{S}(X) \oplus \mathbb{Z} & (i=0)\end{cases}$

Reason:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathcal{N}\left(X \times I^{i}, \partial\right) \cong\left[X \times I^{i}, \partial ; G / \text { TOP }, *\right] \\
\operatorname{GPC} \Longrightarrow \mathcal{S}\left(D^{j}, \partial\right)=0 \quad(j \geqq 4)
\end{array}\right. \\
& \Longrightarrow \pi_{i+j}(G / \mathrm{TOP}) \cong L_{i+j}(\mathbb{Z})
\end{aligned}
$$

In fact, the following is true:

$$
\left\{\begin{array}{l}
\mathbb{L}:=\mathbb{L}(\mathbb{Z}) \simeq G / \text { TOP } \times \mathbb{Z} \quad\left(L_{0}(\mathbb{Z})=\mathbb{Z}\right) \\
G / \text { TOP is connected. }
\end{array}\right.
$$

For $i>0$,

$$
\begin{aligned}
\mathcal{N}\left(X \times I^{i}, \partial\right) & =\left[X \times I^{i}, \partial ; \mathbb{L}, *\right] \\
& =H^{0}\left(X \times I^{i} ; \mathbb{L}\right) \\
& \cong H_{n+i}(X ; \mathbb{L})
\end{aligned}
$$

4-Periodicity $\Longrightarrow \mathcal{S}\left(X \times I^{4}, \partial\right)=0 \Longrightarrow \mathcal{S}(X)=0$
Study $\mathcal{N}\left(X \times I^{i}, \partial\right) \rightarrow L_{n+i}(\mathbb{Z} \pi)$, or
$A: H_{*}(X ; \mathbb{L}) \rightarrow L_{*}(\mathbb{Z} \pi)$ (the assembly map).
will later interpret this map using geometric control

Novikov Conjecture

Γ : a discrete group
$B \Gamma$: the classifying space, i.e. $K(\Gamma, 1)$
N. C. for Γ
\Longleftrightarrow
$H_{*}(B \Gamma ; \mathbb{L}) \xrightarrow{A} L_{*}(\mathbb{Z} \Gamma)$ is a rational split injection

Controlled L-Groups

A QC over $\mathbb{Z} \pi_{1}(X)$ is made up of points in X (basis elements of the modules) and paths connecting them (homomorphisms).
Can introduce 'fineness' using lengths of the paths.
For $0<\epsilon \leqq \delta$,

$$
L_{j}^{\epsilon, \delta}(X ; \mathbb{Z}):=\{j \text {-dim } \epsilon \mathrm{QC} \text { on } X\} / \delta \text { cobordism }
$$

Stability (Squeezing)

For $j \geq 0$ and a compact ANR X, there exist $\delta_{0}>0$ and $T \geq 1$ s.t. for all $\epsilon>0, \delta>0$ satisfying $T \epsilon \leq \delta \leq \delta_{0}$, the groups $L_{j}^{\epsilon, \delta}(X ; \mathbb{Z})$ are all isomorphic.

Denote the common group by $L_{j}^{c}(X ; \mathbb{Z})$, then

$$
L_{j}^{c}(X ; \mathbb{Z}) \cong H_{j}(X ; \mathbb{L})
$$

Generalization

$p: X \rightarrow B$: a 'control' map to a metric space B
A : a ring with involution
$0<\epsilon \leqq \delta$
$L_{j}^{\epsilon, \delta}(B ; A, p):=\{\epsilon \mathrm{QC}$ on $X\} / \delta$ cobordism
'Fineness' is measured on B via p.

Assembly map via geometric control

$$
\begin{aligned}
L_{*}^{c}(X ; \mathbb{Z}) & =L_{*}^{c}(X ; \mathbb{Z}, 1: X \rightarrow X) \\
& \longrightarrow L_{*}^{c}(\{*\} ; \mathbb{Z}, X \rightarrow\{*\})=L_{*}\left(\mathbb{Z} \pi_{1} X\right)
\end{aligned}
$$

("Forget-Control Map")

Use GEOMETRY to understand this map!

Farrell and Jones' Works

Theorem (Farrell-Jones) Borel Conjecture is true for the following $X^{n}(n \neq 3,4)$:
(1) X^{n} is a non-positively curved.
(2) $\pi_{1}\left(X^{n}\right) \subset G L_{m}(\mathbb{R})$ (a discrete subgp)
I.e., any htpy equiv. $M^{n} \rightarrow X$ is htpic to a homeo.

See Farrell's ICTP lecture.

One Ingredient : Transfer

Squeezing in a General Setting

Theorem(Pedersen-Yamasaki)

For $j \geq 0$ and a finite polyhedron B, there exist $\delta_{0}>0$ and $T \geq 1$ s.t. if A is a ring with involution and $p: E \rightarrow B$ is a stratified system of fibrations, then for all $\epsilon>0, \delta>0$ satisfying $T \epsilon \leq \delta \leq \delta_{0}$, the groups $L_{j}^{\epsilon, \delta}(B ; A, p)$ are all isomorphic.

Key Trick: Eilenberg Swindle

$$
1=0!?
$$

$$
\begin{aligned}
1 & =1+((-1)+1)+((-1)+1)+\cdots \\
& =(1+(-1))+(1+(-1))+\cdots \\
& =0
\end{aligned}
$$

Split off a piece near v :
F : free, P, Q : projective
Poincaré Duality \Longrightarrow

$$
\begin{gathered}
{[P]+[Q]=0 \in \widetilde{K}_{0} \text { over Star }(v)} \\
{[P]=\sum(-1)^{j}\left[P_{j}\right], \quad[\Sigma P]=-[P]}
\end{gathered}
$$

Make a Tower :

Finite Stage Eilenberg Swindle:

Squeeze toward v :

Squeeze toward v :

General Case:

Choose an order of the vertices of B, so that larger vertices are in the lower strata.

Starting from the smallest vertex, we 'squeeze' toward the vertices:

Take a vertex v, and consider the 'stable set' S at v which is spanned by the vertices $\geqq v$.

The star nbhd of v deformation retracts into S :

Construct a tower over the star nbhd, and apply the squeezing corresponding to the defirmation retraction to S.

$$
v=2
$$

Rem. In general $L^{c}(B ; A, p)$ is not homology. For this we encounter controlled K-theoretic obstruction.

Topics Related to Squeezing

1. Controlled Surgery Exact Sequence
$p: X^{n} \rightarrow B: U V^{1}, \epsilon<\delta:$ sufficiently small $H_{n+1}(B ; \mathbb{L}) \rightarrow \mathcal{S}^{\epsilon, \delta}(X ; p) \rightarrow \mathcal{N}(X) \rightarrow H_{n}(B ; \mathbb{L})$
2. Homology Manifold Surgery Exact Sequence $L_{n+1}(\mathbb{Z} \pi) \rightarrow \mathcal{S}^{H}(X) \rightarrow H_{n}(X ; \mathbb{L}) \rightarrow L_{n}(\mathbb{Z} \pi)$ 4-periodic: $\mathcal{S}^{H}(X) \cong \mathcal{S}^{H}\left(X \times I^{n}, \partial\right)$
