SURGERY AND GEOMETRY

Josai University Masayuki YAMASAKI an n-dim (topological) manifold = a subset of \mathbb{R}^N locally homeomorphic to \mathbb{R}^n

will only consider oriented manifolds in this talk

SURGERY

M : n-dim manifold

 $H = D^i \times D^{n+1-i}$: (n+1)-dim *i*-handle

$W = M \times [0, 1]$

 $\partial_0 W = M$

Can change a given "map" $f : M^n \to X^n$ into a htpy equiv. using surgery?

Given Map :

Method 1 : attach a 2-handle

Given Map :

Method 2 : attach a 1-handle

Surgery Obstruction

A normal map is a map $f: M \to X$ together with a stable TOP bundle map $b: \nu_M \to \eta$ to some TOP bundle η over X covering f. Notation for later use $\mathsf{TOP}_n = \{h : \mathbb{R}^n \to \mathbb{R}^n ; \text{ homeo.}, h(O) = O\}$ $B\mathsf{TOP} : \text{ the classifying sp. of stable TOP bundles}$

 $G_n = \{h: S^{n-1} \to S^{n-1} ; htpy equiv.\}$ BG : the classifying sp. of stable spherical fibrations

G/TOP : htpy fiber of $B\mathsf{TOP} \to BG$

Assume $n \geq 5$.

$$\sigma(f) = 0 \quad \Longrightarrow \quad$$

can change f into a htpy equiv. by surgery

Similarly for manifolds w/ boundary.

$$\begin{cases} f: (M^n, \partial M) \to (X^n, \partial X) \\ \partial f: \partial M \xrightarrow{\simeq} \partial X \end{cases} \end{cases} \Rightarrow \sigma(f) \in L_{n+1}(\mathbb{Z}\pi)$$

 $\sigma(f) = 0 \implies \text{surgery } rel \ \partial \text{ is possible}$

Summary : Surgery Exact Sequence $\rightarrow \mathcal{S}(X \times I, \partial) \rightarrow \mathcal{N}(X \times I, \partial) \rightarrow L_{n+1}(\mathbb{Z}\pi)$ $\longrightarrow \mathcal{S}(X) \longrightarrow \mathcal{N}(X) \longrightarrow L_n(\mathbb{Z}\pi)$ $\mathcal{S}(X) = \{ f : M^n \xrightarrow{\simeq} X \} / \sim$ $\mathcal{N}(X) = \{f: M^n \to X \text{ degree } 1 \text{ normal map}\} / \sim$

Require that f be a homeo. on the boundary.

$$f_0: M_0 \xrightarrow{\simeq} X \sim f_1: M_1 \xrightarrow{\simeq} X \iff$$
$$\exists W; \partial W = M_0 \cup M_1, \quad \exists F: W \xrightarrow{\simeq} X \times [0, 1]$$
$$F|M_0 = f_0, \quad F|M_1 = f_1$$

$$f_0: M_0 \xrightarrow{\simeq} X \sim f_1: M_1 \xrightarrow{\simeq} X$$
$$\implies (W; M_0) \text{ is an } h\text{-cobordism}$$
$$\text{If } Wh(\pi_1(X)) = 0 \text{ and } n \ge 5,$$
$$\implies W \cong M_0 \times I \text{ (s-cobordism theorem)}$$
$$\implies M_0 \cong M_1$$

Wh(G): the Whitehead group of G $Wh(\{1\}) = 0, Wh(\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}) = 0$ Equiv. Rel. ~ in the def. of $\mathcal{N}(X)$: $f_0: M_0 \to X \sim f_1: M_1 \to X \iff$ $\exists W; \partial W = M_0 \cup M_1, \quad \exists F: W \to X \times [0, 1]$ $F|M_0 = f_0, \quad F|M_1 = f_1$

 $\iff f_0$ can be changed into f_1 by surgery $(n \neq 4)$

Typical Examples ($n \ge 5$, n = 4 : Freedman)

(1)
$$X = S^n \Longrightarrow \mathcal{S}(X^n) = \{0\}$$
 (Smale, ...)

(2) $X = T^n \Longrightarrow \mathcal{S}(X^n) = \{0\}$ (Hsiang-Wall)

Any htpy equiv. $M^n \to X^n$ is htpic to a homeo.

Generalization?

(1)⇒ simply-connected manifolds ... No.
 (2)⇒ aspherical manifolds ... Borel Conjecture.

Borel Conjecture

 X^n :an aspherical manifold $[\pi_i(X) = 0 \ (i > 1)]$ \implies Any htpy equiv. $M^n \xrightarrow{\simeq} X$ is htpic to a homeo.

Suffices to show $Wh(\pi_1 X) = 0$, $\mathcal{S}(X) = \{0\}$.

Conj. G : torsion-free $\Longrightarrow Wh(G) = 0$

Rem. Asperical manifolds have torsion-free π_1 .

Criterion for $\mathcal{S}(X) = 0$: $\mathcal{N}(X \times I, \partial) \xrightarrow{\text{surjective}} L_{n+1}(\mathbb{Z}\pi) \longrightarrow$

Will sketch the mechanism ...

Given an $f \in \mathcal{S}(X)$,

 $M \longrightarrow f \longrightarrow X$

$\mathcal{N}(X) \to L_n(\mathbb{Z}\pi)$: injective $\Rightarrow [f] = 0 \in \mathcal{N}(X)$

$\mathcal{N}(X \times I, \partial) \longrightarrow L_{n+1}(\mathbb{Z}\pi) \Rightarrow \text{can realize } -\sigma$

Now perform surgery to get a htpy equiv.

$$A = \mathbb{Z}\pi \text{ or a ring with involution } (x \mapsto \overline{x})$$
$$L_j(A) = \{j \text{-dim QC over } A\}/\text{cobordism}$$
$$\mathbb{L}(A)_0 = \text{the space of 0-dim QC's over } A$$
$$\implies \pi_j(\mathbb{L}(A)_0) = L_j(A)$$

- a 0-dim QC = a quadratic form
- = (a free *A*-module $K, \psi_0 : K^* \to K$)

s.t. $\psi_0 + \psi_0^* : K^* \to K$ an iso.

Delooping of $\mathbb{L}(A)_0$

a j-dim QC

 $= (a \ j\text{-dim} \operatorname{cx} C, \{\psi_s : C^{j-s-*} \to C_*; s \ge 0\})$ s.t. $\psi_0 \pm \psi_0^* : C^{j-*} \to C_*$ a chain eq. $\mathbb{L}(A)_k = \text{the space of } (-k)\text{-dim QC's over } A \ (!?)$ $\Longrightarrow \Omega \mathbb{L}(A)_{k+1} \simeq \mathbb{L}(A)_k$ $\Longrightarrow \mathbb{L}(A) = \{\mathbb{L}(A)_k\} \text{ is an } \Omega\text{-spectrum}$

-simplex = 0-dim QC

-simplex = 1-dim QC with boundary

the only 0-simplex = 0 (basepoint) 1-simplex = 0-dim QC 2-simplex = 1-dim QC with ∂, \cdots

Four-periodicity

•
$$L_i(\mathbb{Z}\pi) \cong L_{i+4}(\mathbb{Z}\pi) \quad (i \ge 0)$$

•
$$\mathcal{N}(X \times I^{i+4}, \partial) \cong \begin{cases} \mathcal{N}(X \times I^{i}, \partial) & (i \ge 1) \\ \mathcal{N}(X) \oplus \mathbb{Z} & (i = 0) \end{cases}$$

•
$$\mathcal{S}(X \times I^{i+4}, \partial) \cong \begin{cases} \mathcal{S}(X \times I^i, \partial) & (i \ge 1) \\ \mathcal{S}(X) \text{ or } \mathcal{S}(X) \oplus \mathbb{Z} & (i = 0) \end{cases}$$

Reason:

$$\begin{cases}
\mathcal{N}(X \times I^{i}, \partial) \cong [X \times I^{i}, \partial ; G/\mathsf{TOP}, *] \\
\mathsf{GPC} \Longrightarrow \mathcal{S}(D^{j}, \partial) = 0 \quad (j \geqq 4) \\
\Longrightarrow \pi_{i+j}(G/\mathsf{TOP}) \cong L_{i+j}(\mathbb{Z})
\end{cases}$$

In fact, the following is true:

 $\begin{cases} \mathbb{L} := \mathbb{L}(\mathbb{Z}) \simeq G/\mathsf{TOP} \times \mathbb{Z} & (L_0(\mathbb{Z}) = \mathbb{Z}) \\ G/\mathsf{TOP} \text{ is connected.} \end{cases}$

For i > 0,

$\mathcal{N}(X \times I^{i}, \partial) = [X \times I^{i}, \partial ; \mathbb{L}, *]$ $= H^{0}(X \times I^{i} ; \mathbb{L})$ $\cong H_{n+i}(X ; \mathbb{L})$

4-Periodicity
$$\Longrightarrow | \mathcal{S}(X \times I^4, \partial) = 0 \Longrightarrow \mathcal{S}(X) = 0$$

Study
$$\mathcal{N}(X \times I^i, \partial) \to L_{n+i}(\mathbb{Z}\pi)$$
, or

$$A: H_*(X; \mathbb{L}) \to L_*(\mathbb{Z}\pi) \mid$$
(the assembly map).

will later interpret this map using geometric control

Novikov Conjecture

- Γ : a discrete group
- $B\Gamma$: the classifying space, *i.e.* $K(\Gamma, 1)$

N. C. for Γ

$\iff H_*(B\Gamma; \mathbb{L}) \xrightarrow{A} L_*(\mathbb{Z}\Gamma) \text{ is a rational split injection}$

A QC over $\mathbb{Z}\pi_1(X)$ is made up of points in X (basis elements of the modules) and paths connecting them (homomorphisms).

Can introduce 'fineness' using lengths of the paths. For $0 < \epsilon \leq \delta$, $I^{\epsilon,\delta}(Y,\mathbb{Z}) = \{i, dimension 0 \in \mathbb{Z}, V\}/\delta$ schemelient

$$L_{j}^{\epsilon,\sigma}(X;\mathbb{Z}) := \{j \text{-dim } \epsilon \text{ QC on } X\}/\delta \text{ cobordism}$$

For
$$j \ge 0$$
 and a compact ANR X , there exist $\delta_0 > 0$ and $T \ge 1$ s.t. for all $\epsilon > 0$, $\delta > 0$ satisfying $T\epsilon \le \delta \le \delta_0$, the groups $L_j^{\epsilon,\delta}(X;\mathbb{Z})$ are all isomorphic.

Denote the common group by $L_j^c(X;\mathbb{Z})$, then

 $L_j^c(X;\mathbb{Z}) \cong H_j(X;\mathbb{L})$.

Generalization

 $p: X \to B \hspace{.1in}:\hspace{.1in}$ a 'control' map to a metric space B

A : a ring with involution

 $0<\epsilon\leqq\delta$

$$L_{j}^{\epsilon,\delta}(B;A,p) \ := \ \{\epsilon \text{ QC on } X\}/\delta \text{ cobordism}$$

'Fineness' is measured on B via p.

Assembly map via geometric control

$L^{c}_{*}(X;\mathbb{Z}) = L^{c}_{*}(X;\mathbb{Z},1:X \to X)$ $\longrightarrow L^{c}_{*}(\{*\};\mathbb{Z},X \to \{*\}) = L_{*}(\mathbb{Z}\pi_{1}X)$

("Forget-Control Map")

Use **GEOMETRY** to understand this map!

Farrell and Jones' Works

Theorem (Farrell-Jones) Borel Conjecture is true for the following X^n $(n \neq 3, 4)$: (1) X^n is a non-positively curved. (2) $\pi_1(X^n) \subset GL_m(\mathbb{R})$ (a discrete subgp)

I.e., any htpy equiv. $M^n \to X$ is htpic to a homeo. See Farrell's ICTP lecture.

One Ingredient : Transfer

Squeezing in a General Setting

Theorem (Pedersen-Yamasaki)

For $j \ge 0$ and a finite polyhedron B, there exist $\delta_0 > 0$ and $T \ge 1$ s.t. if A is a ring with involution and $p: E \rightarrow B$ is a stratified system of fibrations, then for all $\epsilon > 0$, $\delta > 0$ satisfying $T\epsilon \leq \delta \leq \delta_0$, the groups $L_i^{\epsilon,\delta}(B;A,p)$ are all isomorphic.

Key Trick : Eilenberg Swindle

1 = 0 !?

$1 = 1 + ((-1) + 1) + ((-1) + 1) + \cdots$ $= (1 + (-1)) + (1 + (-1)) + \cdots$ = 0

Split off a piece near v: F : free, P, Q : projective Poincaré Duality \Longrightarrow $[P] + [Q] = 0 \in \widetilde{K}_0 \text{ over } \operatorname{Star}(v)$ $[P] = \sum (-1)^{j} [P_{j}], \quad [\Sigma P] = -[P]$

Make a Tower :

Finite Stage Eilenberg Swindle:

Squeeze toward v:

Squeeze toward v:

General Case:

Choose an order of the vertices of B, so that larger vertices are in the lower strata.

Starting from the smallest vertex, we 'squeeze' toward the vertices:

Take a vertex v, and consider the 'stable set' S at v which is spanned by the vertices $\geq v$.

The star nbhd of v deformation retracts into S:

Construct a tower over the star nbhd, and apply the squeezing corresponding to the defirmation retraction to S.

v = 2

Rem. In general $L^{c}(B; A, p)$ is not homology. For this we encounter controlled *K*-theoretic obstruction. 1. Controlled Surgery Exact Sequence

 $p: X^n \to B: UV^1, \epsilon < \delta:$ sufficiently small $H_{n+1}(B; \mathbb{L}) \to \mathcal{S}^{\epsilon, \delta}(X; p) \to \mathcal{N}(X) \to H_n(B; \mathbb{L})$

2. Homology Manifold Surgery Exact Sequence $L_{n+1}(\mathbb{Z}\pi) \to S^H(X) \to H_n(X; \mathbb{L}) \to L_n(\mathbb{Z}\pi)$ 4-periodic : $S^H(X) \cong S^H(X \times I^n, \partial)$